Skip to main content

SpKit: Signal Processing toolkit | Nikesh Bajaj |

Project description

Signal Processing toolkit

Links: Homepage | Documentation | Github | PyPi - project | _ Installation: pip install spkit


CircleCI Documentation Status License: MIT PyPI version fury.io PyPI pyversions GitHub release PyPI format PyPI implementation HitCount GitHub commit activity Percentage of issues still open PyPI download month PyPI download week

Generic badge Ask Me Anything !

PyPI - Downloads

DOI


Installation

Requirement: numpy, matplotlib, scipy.stats, scikit-learn, seaborn

with pip

pip install spkit

update with pip

pip install spkit --upgrade

New in 0.0.9.5:

MEA Processing Toolkit

  • sp.mea

Geometrical Functions

  • sp.gemetry

More on signal processing

  • sp.core

Statistics

  • sp.stats

For updated list of contents and documentation check github or Documentation

List of all functions

Signal Processing Techniques

Information Theory functions

for real valued signals

  • Entropy

    • Shannon entropy
    • Rényi entropy of order α, Collision entropy,
    • Joint entropy
    • Conditional entropy
    • Mutual Information
    • Cross entropy
    • Kullback–Leibler divergence
    • Spectral Entropy
    • Approximate Entropy
    • Sample Entropy
    • Permutation Entropy
    • SVD Entropy
  • Plot histogram with optimal bin size

  • Computation of optimal bin size for histogram using FD-rule

  • Compute bin_width with various statistical measures

  • Plot Venn Diagram- joint distribuation and normalized entropy values

Dispersion Entropy --for time series (physiological signals)

  • Dispersion Entropy (Advanced) - for time series signal
    • Dispersion Entropy
    • Dispersion Entropy - multiscale
    • Dispersion Entropy - multiscale - refined

Matrix Decomposition

  • SVD
  • ICA using InfoMax, Extended-InfoMax, FastICA & Picard

Continuase Wavelet Transform

  • Gauss wavelet
  • Morlet wavelet
  • Gabor wavelet
  • Poisson wavelet
  • Maxican wavelet
  • Shannon wavelet

Discrete Wavelet Transform

  • Wavelet filtering
  • Wavelet Packet Analysis and Filtering

Basic Filtering

  • Removing DC/ Smoothing for multi-channel signals
  • Bandpass/Lowpass/Highpass/Bandreject filtering for multi-channel signals

Biomedical Signal Processing

MEA Processing Toolkit

Artifact Removal Algorithm

Analysis and Synthesis Models

  • DFT Analysis & Synthesis
  • STFT Analysis & Synthesis
  • Sinasodal Model - Analysis & Synthesis
    • to decompose a signal into sinasodal wave tracks
  • f0 detection

Ramanajum Methods for period estimation

  • Period estimation for a short length sequence using Ramanujam Filters Banks (RFB)
  • Minizing sparsity of periods

Fractional Fourier Transform

  • Fractional Fourier Transform
  • Fast Fractional Fourier Transform

Machine Learning models - with visualizations

  • Logistic Regression
  • Naive Bayes
  • Decision Trees
  • DeepNet (to be updated)

Linear Feedback Shift Register

  • pylfsr

Cite As

@software{nikesh_bajaj_2021_4710694,
  author       = {Nikesh Bajaj},
  title        = {Nikeshbajaj/spkit: 0.0.9.4},
  month        = apr,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.0.9.4},
  doi          = {10.5281/zenodo.4710694},
  url          = {https://doi.org/10.5281/zenodo.4710694}
}

Contacts:

Imperial College London


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spkit-0.0.9.5.tar.gz (1.4 MB view details)

Uploaded Source

Built Distribution

spkit-0.0.9.5-py3-none-any.whl (1.5 MB view details)

Uploaded Python 3

File details

Details for the file spkit-0.0.9.5.tar.gz.

File metadata

  • Download URL: spkit-0.0.9.5.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for spkit-0.0.9.5.tar.gz
Algorithm Hash digest
SHA256 54ca53bdafec8310e11c5178786393fb5cb878c22bdfe5adf34fefb5618bd373
MD5 3c669a2c53786fc610fbc00a653cfc63
BLAKE2b-256 0cdbc56b89067f8584e947445edc122e71a1d39f4123910c3608cd9f4c65b8f6

See more details on using hashes here.

File details

Details for the file spkit-0.0.9.5-py3-none-any.whl.

File metadata

  • Download URL: spkit-0.0.9.5-py3-none-any.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for spkit-0.0.9.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f4a027ded25a58b2cd7c0e9e059f3d79c51dafe14975044a9e1e727e3653d05c
MD5 5a8dc4c4acbf75bd4f4272f53339c0e7
BLAKE2b-256 3e6a12d1b766e98a7d0468c259217750e92bc6db8c2c9ea051ca8aa0bc12c492

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page