SpKit: Signal Processing toolkit | Nikesh Bajaj |
Project description
Signal Processing toolkit
Links: Homepage | Documentation | Github | PyPi - project | _ Installation: pip install spkit
Installation
Requirement: numpy, matplotlib, scipy.stats, scikit-learn, seaborn
with pip
pip install spkit
update with pip
pip install spkit --upgrade
New in 0.0.9.5:
MEA Processing Toolkit
- sp.mea
Geometrical Functions
- sp.gemetry
More on signal processing
- sp.core
Statistics
- sp.stats
For updated list of contents and documentation check github or Documentation
List of all functions
Signal Processing Techniques
Information Theory functions
for real valued signals
-
Entropy
- Shannon entropy
- Rényi entropy of order α, Collision entropy,
- Joint entropy
- Conditional entropy
- Mutual Information
- Cross entropy
- Kullback–Leibler divergence
- Spectral Entropy
- Approximate Entropy
- Sample Entropy
- Permutation Entropy
- SVD Entropy
-
Plot histogram with optimal bin size
-
Computation of optimal bin size for histogram using FD-rule
-
Compute bin_width with various statistical measures
-
Plot Venn Diagram- joint distribuation and normalized entropy values
Dispersion Entropy --for time series (physiological signals)
- Dispersion Entropy (Advanced) - for time series signal
- Dispersion Entropy
- Dispersion Entropy - multiscale
- Dispersion Entropy - multiscale - refined
Matrix Decomposition
- SVD
- ICA using InfoMax, Extended-InfoMax, FastICA & Picard
Continuase Wavelet Transform
- Gauss wavelet
- Morlet wavelet
- Gabor wavelet
- Poisson wavelet
- Maxican wavelet
- Shannon wavelet
Discrete Wavelet Transform
- Wavelet filtering
- Wavelet Packet Analysis and Filtering
Basic Filtering
- Removing DC/ Smoothing for multi-channel signals
- Bandpass/Lowpass/Highpass/Bandreject filtering for multi-channel signals
Biomedical Signal Processing
MEA Processing Toolkit
Artifact Removal Algorithm
- ATAR Algorithm Automatic and Tunable Artifact Removal Algorithm for EEG from artical
- ICA based Algorith
Analysis and Synthesis Models
- DFT Analysis & Synthesis
- STFT Analysis & Synthesis
- Sinasodal Model - Analysis & Synthesis
- to decompose a signal into sinasodal wave tracks
- f0 detection
Ramanajum Methods for period estimation
- Period estimation for a short length sequence using Ramanujam Filters Banks (RFB)
- Minizing sparsity of periods
Fractional Fourier Transform
- Fractional Fourier Transform
- Fast Fractional Fourier Transform
Machine Learning models - with visualizations
- Logistic Regression
- Naive Bayes
- Decision Trees
- DeepNet (to be updated)
Linear Feedback Shift Register
- pylfsr
Cite As
@software{nikesh_bajaj_2021_4710694,
author = {Nikesh Bajaj},
title = {Nikeshbajaj/spkit: 0.0.9.4},
month = apr,
year = 2022,
publisher = {Zenodo},
version = {0.0.9.4},
doi = {10.5281/zenodo.4710694},
url = {https://doi.org/10.5281/zenodo.4710694}
}
Contacts:
- Nikesh Bajaj
- http://nikeshbajaj.in
- n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk
Imperial College London
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spkit-0.0.9.5.tar.gz
(1.4 MB
view details)
Built Distribution
File details
Details for the file spkit-0.0.9.5.tar.gz
.
File metadata
- Download URL: spkit-0.0.9.5.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54ca53bdafec8310e11c5178786393fb5cb878c22bdfe5adf34fefb5618bd373 |
|
MD5 | 3c669a2c53786fc610fbc00a653cfc63 |
|
BLAKE2b-256 | 0cdbc56b89067f8584e947445edc122e71a1d39f4123910c3608cd9f4c65b8f6 |
File details
Details for the file spkit-0.0.9.5-py3-none-any.whl
.
File metadata
- Download URL: spkit-0.0.9.5-py3-none-any.whl
- Upload date:
- Size: 1.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4a027ded25a58b2cd7c0e9e059f3d79c51dafe14975044a9e1e727e3653d05c |
|
MD5 | 5a8dc4c4acbf75bd4f4272f53339c0e7 |
|
BLAKE2b-256 | 3e6a12d1b766e98a7d0468c259217750e92bc6db8c2c9ea051ca8aa0bc12c492 |