Skip to main content

SpKit: Signal Processing ToolKit

Project description

Signal Processing toolkit

Links: Homepage | Documentation | Github | PyPi - project | _ Installation: pip install spkit


CircleCI Documentation Status License: MIT PyPI version fury.io PyPI pyversions GitHub release PyPI format PyPI implementation HitCount GitHub commit activity Percentage of issues still open PyPI download month PyPI download week

Generic badge Ask Me Anything !

PyPI - Downloads

DOI


Installation

Requirement: numpy, matplotlib, scipy.stats, scikit-learn, seaborn

with pip

pip install spkit

update with pip

pip install spkit --upgrade

New in 0.0.9.7:

MEA Processing Toolkit

New in 0.0.9.5:

MEA Processing Toolkit

  • sp.mea

Geometrical Functions

  • sp.gemetry

More on signal processing

  • sp.core

Statistics

  • sp.stats

For updated list of contents and documentation check github or Documentation

List of all functions

Signal Processing Techniques

Information Theory functions

for real valued signals

  • Entropy

    • Shannon entropy
    • Rényi entropy of order α, Collision entropy,
    • Joint entropy
    • Conditional entropy
    • Mutual Information
    • Cross entropy
    • Kullback–Leibler divergence
    • Spectral Entropy
    • Approximate Entropy
    • Sample Entropy
    • Permutation Entropy
    • SVD Entropy
  • Plot histogram with optimal bin size

  • Computation of optimal bin size for histogram using FD-rule

  • Compute bin_width with various statistical measures

  • Plot Venn Diagram- joint distribuation and normalized entropy values

Dispersion Entropy --for time series (physiological signals)

  • Dispersion Entropy (Advanced) - for time series signal
    • Dispersion Entropy
    • Dispersion Entropy - multiscale
    • Dispersion Entropy - multiscale - refined

Matrix Decomposition

  • SVD
  • ICA using InfoMax, Extended-InfoMax, FastICA & Picard

Continuase Wavelet Transform

  • Gauss wavelet
  • Morlet wavelet
  • Gabor wavelet
  • Poisson wavelet
  • Maxican wavelet
  • Shannon wavelet

Discrete Wavelet Transform

  • Wavelet filtering
  • Wavelet Packet Analysis and Filtering

Basic Filtering

  • Removing DC/ Smoothing for multi-channel signals
  • Bandpass/Lowpass/Highpass/Bandreject filtering for multi-channel signals

Biomedical Signal Processing

MEA Processing Toolkit

Artifact Removal Algorithm

Analysis and Synthesis Models

  • DFT Analysis & Synthesis
  • STFT Analysis & Synthesis
  • Sinasodal Model - Analysis & Synthesis
    • to decompose a signal into sinasodal wave tracks
  • f0 detection

Ramanajum Methods for period estimation

  • Period estimation for a short length sequence using Ramanujam Filters Banks (RFB)
  • Minizing sparsity of periods

Fractional Fourier Transform

  • Fractional Fourier Transform
  • Fast Fractional Fourier Transform

Machine Learning models - with visualizations

  • Logistic Regression
  • Naive Bayes
  • Decision Trees
  • DeepNet (to be updated)

Linear Feedback Shift Register

  • pylfsr

Cite As

@software{nikesh_bajaj_2021_4710694,
  author       = {Nikesh Bajaj},
  title        = {Nikeshbajaj/spkit: 0.0.9.4},
  month        = apr,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {0.0.9.4},
  doi          = {10.5281/zenodo.4710694},
  url          = {https://doi.org/10.5281/zenodo.4710694}
}

Contacts:

Imperial College London


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spkit-0.0.9.6.7.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

spkit-0.0.9.6.7-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file spkit-0.0.9.6.7.tar.gz.

File metadata

  • Download URL: spkit-0.0.9.6.7.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for spkit-0.0.9.6.7.tar.gz
Algorithm Hash digest
SHA256 3d41f3fc2a655ee719ef9959de91d517012ee5cee672f087e6b7f976ad3f7464
MD5 fd2254ede41c7594e3b142fe79c45be9
BLAKE2b-256 54a8c970267329672d160137c93e25297d1bff1e00c835279f371bfc14b3f101

See more details on using hashes here.

File details

Details for the file spkit-0.0.9.6.7-py3-none-any.whl.

File metadata

  • Download URL: spkit-0.0.9.6.7-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for spkit-0.0.9.6.7-py3-none-any.whl
Algorithm Hash digest
SHA256 6057b4c7468fb64d602c1fadb230f505785a4d7a195eb52b88899ad3d711b333
MD5 c18f86c54fca6747f9094dc7c2d23141
BLAKE2b-256 4249af1b4293dae5063979d8628ae6c898058227091d713d54e11b121fcf21c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page