Skip to main content

SpKit: Signal Processing ToolKit

Project description

Signal Processing toolkit

Links: Homepage | Documentation | Github | PyPi - project |


CircleCI Documentation Status License: MIT PyPI version fury.io PyPI pyversions GitHub release PyPI format PyPI implementation HitCount GitHub commit activity Percentage of issues still open PyPI download month PyPI download week

Generic badge Ask Me Anything !

PyPI - Downloads

DOI

Installation

Requirement: numpy, matplotlib, scipy.stats, scikit-learn, seaborn

with pip

pip install spkit

update with pip

pip install spkit --upgrade

For updated list of contents and documentation check github or Documentation

List of functions [check updated list on homepage]

Information Theory and Signal Processing functions

for real valued signals

  • Entropy

    • Shannon entropy
    • Rényi entropy of order α, Collision entropy,
    • Joint entropy
    • Conditional entropy
    • Mutual Information
    • Cross entropy
    • Kullback–Leibler divergence
    • Spectral Entropy
    • Approximate Entropy
    • Sample Entropy
    • Permutation Entropy
    • SVD Entropy
  • Dispersion Entropy (Advanced) - for time series signal

    • Dispersion Entropy
    • Dispersion Entropy - multiscale
    • Dispersion Entropy - multiscale - refined
  • Differential Entropy (Advanced) - for time series signal

    • Differential Entropy
    • Mutual Information, Conditional, Joint, Entropy
    • Transfer Entropy

Matrix Decomposition

  • SVD
  • ICA using InfoMax, Extended-InfoMax, FastICA & Picard

Continuase Wavelet Transform

  • Gauss wavelet
  • Morlet wavelet
  • Gabor wavelet
  • Poisson wavelet
  • Maxican wavelet
  • Shannon wavelet

Discrete Wavelet Transform

  • Wavelet filtering
  • Wavelet Packet Analysis and Filtering

Signal Filtering

  • Removing DC/ Smoothing for multi-channel signals
  • Bandpass/Lowpass/Highpass/Bandreject filtering for multi-channel signals

Biomedical Signal Processing

  • EEG Signal Processing
  • MEA Processing Toolkit

Artifact Removal Algorithm

Analysis and Synthesis Models

  • DFT Analysis & Synthesis
  • STFT Analysis & Synthesis
  • Sinasodal Model - Analysis & Synthesis
    • to decompose a signal into sinasodal wave tracks
  • f0 detection

Ramanajum Methods for period estimation

  • Period estimation for a short length sequence using Ramanujam Filters Banks (RFB)
  • Minizing sparsity of periods

Fractional Fourier Transform

  • Fractional Fourier Transform
  • Fast Fractional Fourier Transform

Machine Learning models - with visualizations

  • Logistic Regression
  • Naive Bayes
  • Decision Trees

and many more ...

Cite As

@software{nikesh_bajaj_2021_4710694,
  author       = {Nikesh Bajaj},
  title        = {Nikeshbajaj/spkit: 0.0.9.4},
  month        = apr,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {0.0.9.4},
  doi          = {10.5281/zenodo.4710694},
  url          = {https://doi.org/10.5281/zenodo.4710694}
}

Contacts:


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spkit-0.0.9.7.tar.gz (4.2 MB view details)

Uploaded Source

Built Distribution

spkit-0.0.9.7-py3-none-any.whl (4.3 MB view details)

Uploaded Python 3

File details

Details for the file spkit-0.0.9.7.tar.gz.

File metadata

  • Download URL: spkit-0.0.9.7.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for spkit-0.0.9.7.tar.gz
Algorithm Hash digest
SHA256 9ecdf0b811cfb5d7a68b7311407e21cfee9177db308f4f9166f247ede00603b3
MD5 a0d5e6d3ab6acef948a7a655b3535a3b
BLAKE2b-256 2b5dbec5efe3b11d0ed693774dad739b10b4813575ada9a4ea39e2659cdd7212

See more details on using hashes here.

File details

Details for the file spkit-0.0.9.7-py3-none-any.whl.

File metadata

  • Download URL: spkit-0.0.9.7-py3-none-any.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for spkit-0.0.9.7-py3-none-any.whl
Algorithm Hash digest
SHA256 cf3b3542b72e3ae87c2a45b83223a5442f4fb253a2f7886b62b9cecd9b8cc316
MD5 07da842953a6cd1cd15f0b7f93b1871a
BLAKE2b-256 05e3d9f22f54eff617119b68cc66aa799b6212ecb4d7b765b0cc4ac0b39606cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page