SpKit: Signal Processing ToolKit
Project description
Signal Processing toolkit
Links: Homepage | Documentation | Github | PyPi - project |
Installation
Requirement: numpy, matplotlib, scipy.stats, scikit-learn, seaborn
with pip
pip install spkit
update with pip
pip install spkit --upgrade
For updated list of contents and documentation check github or Documentation
List of functions [check updated list on homepage]
Information Theory and Signal Processing functions
for real valued signals
-
Entropy
- Shannon entropy
- Rényi entropy of order α, Collision entropy,
- Joint entropy
- Conditional entropy
- Mutual Information
- Cross entropy
- Kullback–Leibler divergence
- Spectral Entropy
- Approximate Entropy
- Sample Entropy
- Permutation Entropy
- SVD Entropy
-
Dispersion Entropy (Advanced) - for time series signal
- Dispersion Entropy
- Dispersion Entropy - multiscale
- Dispersion Entropy - multiscale - refined
-
Differential Entropy (Advanced) - for time series signal
- Differential Entropy
- Mutual Information, Conditional, Joint, Entropy
- Transfer Entropy
Matrix Decomposition
- SVD
- ICA using InfoMax, Extended-InfoMax, FastICA & Picard
Continuase Wavelet Transform
- Gauss wavelet
- Morlet wavelet
- Gabor wavelet
- Poisson wavelet
- Maxican wavelet
- Shannon wavelet
Discrete Wavelet Transform
- Wavelet filtering
- Wavelet Packet Analysis and Filtering
Signal Filtering
- Removing DC/ Smoothing for multi-channel signals
- Bandpass/Lowpass/Highpass/Bandreject filtering for multi-channel signals
Biomedical Signal Processing
- EEG Signal Processing
- MEA Processing Toolkit
Artifact Removal Algorithm
- ATAR Algorithm Automatic and Tunable Artifact Removal Algorithm for EEG from artical
- ICA based Algorith
Analysis and Synthesis Models
- DFT Analysis & Synthesis
- STFT Analysis & Synthesis
- Sinasodal Model - Analysis & Synthesis
- to decompose a signal into sinasodal wave tracks
- f0 detection
Ramanajum Methods for period estimation
- Period estimation for a short length sequence using Ramanujam Filters Banks (RFB)
- Minizing sparsity of periods
Fractional Fourier Transform
- Fractional Fourier Transform
- Fast Fractional Fourier Transform
Machine Learning models - with visualizations
- Logistic Regression
- Naive Bayes
- Decision Trees
and many more ...
Cite As
@software{nikesh_bajaj_2021_4710694,
author = {Nikesh Bajaj},
title = {Nikeshbajaj/spkit: 0.0.9.4},
month = apr,
year = 2021,
publisher = {Zenodo},
version = {0.0.9.4},
doi = {10.5281/zenodo.4710694},
url = {https://doi.org/10.5281/zenodo.4710694}
}
Contacts:
- Nikesh Bajaj
- https://nikeshbajaj.in
- n.bajaj[AT]qmul.ac.uk, n.bajaj[AT]imperial[dot]ac[dot]uk
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spkit-0.0.9.7.tar.gz
(4.2 MB
view details)
Built Distribution
File details
Details for the file spkit-0.0.9.7.tar.gz
.
File metadata
- Download URL: spkit-0.0.9.7.tar.gz
- Upload date:
- Size: 4.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ecdf0b811cfb5d7a68b7311407e21cfee9177db308f4f9166f247ede00603b3 |
|
MD5 | a0d5e6d3ab6acef948a7a655b3535a3b |
|
BLAKE2b-256 | 2b5dbec5efe3b11d0ed693774dad739b10b4813575ada9a4ea39e2659cdd7212 |
File details
Details for the file spkit-0.0.9.7-py3-none-any.whl
.
File metadata
- Download URL: spkit-0.0.9.7-py3-none-any.whl
- Upload date:
- Size: 4.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf3b3542b72e3ae87c2a45b83223a5442f4fb253a2f7886b62b9cecd9b8cc316 |
|
MD5 | 07da842953a6cd1cd15f0b7f93b1871a |
|
BLAKE2b-256 | 05e3d9f22f54eff617119b68cc66aa799b6212ecb4d7b765b0cc4ac0b39606cd |