Skip to main content

🗂 Split folders with files (e.g. images) into training, validation and test (dataset) folders.

Project description

Split Folders Build Status PyPI PyPI - Python Version

Split folders with files (e.g. images) into train, validation and test (dataset) folders.

The input folder shoud have the following format:

input/
    class1/
        img1.jpg
        img2.jpg
        ...
    class2/
        imgWhatever.jpg
        ...
    ...

In order to give you this:

output/
    train/
        class1/
            img1.jpg
            ...
        class2/
            imga.jpg
            ...
    val/
        class1/
            img2.jpg
            ...
        class2/
            imgb.jpg
            ...
    test/
        class1/
            img3.jpg
            ...
        class2/
            imgc.jpg
            ...

This should get you started to do some serious deep learning on your data. Read here why it's a good idea to split your data intro three different sets.

  • You may only split into a training and validation set.
  • The data gets split before it gets shuffled.
  • A seed lets you reproduce the splits.
  • Works on any file types.
  • Allows randomized oversampling for imbalanced datasets.
  • (Should) work on all operating systems.

Install

pip install split-folders

Usage

You you can use split_folders as Python module or as a Command Line Interface (CLI).

If your datasets is balanced (each class has the same number of samples), choose ratio otherwise fixed. NB: oversampling is turned off by default.

Module

import split_folders

# Split with a ratio.
# To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`.
split_folders.ratio('input_folder', output="output", seed=1337, ratio=(.8, .1, .1)) # default values

# Split val/test with a fixed number of items e.g. 100 for each set.
# To only split into training and validation set, use a single number to `fixed`, i.e., `10`.
split_folders.fixed('input_folder', output="output", seed=1337, fixed=(100, 100), oversample=False) # default values

CLI

Usage:
    split_folders folder_with_images [--output] [--ratio] [--fixed] [--seed] [--oversample]
Options:
    --output     path to the output folder. defaults to `output`. Get created if non-existent.
    --ratio      the ratio to split. e.g. for train/val/test `.8 .1 .1` or for train/val `.8 .2`.
    --fixed      set the absolute number of items per validation/test set. The remaining items constitute
                 the training set. e.g. for train/val/test `100 100` or for train/val `100`.
    --seed       set seed value for shuffling the items. defaults to 1337.
    --oversample enable oversampling of imbalanced datasets, works only with --fixed.
Example:
    split_folders imgs --ratio .8 .1 .1

License

MIT.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

split_folders-0.2.1.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

split_folders-0.2.1-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file split_folders-0.2.1.tar.gz.

File metadata

  • Download URL: split_folders-0.2.1.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for split_folders-0.2.1.tar.gz
Algorithm Hash digest
SHA256 ff395e9e8737fcb36e7525d5e7f6da540815668d32ffff72279e9994005a9ef7
MD5 eaeadaf38e79fbe8dfe2e0bde46e2192
BLAKE2b-256 c66a0ea62ce52646ac56f95b2496a54246103d95893dd1728c1fcb96593d550d

See more details on using hashes here.

File details

Details for the file split_folders-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: split_folders-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for split_folders-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1f9818aeb5500434cb2950810cda7788a116bea72db57bc62713aa049871fbba
MD5 ac5bbe52f780b69912528c57932656e4
BLAKE2b-256 ff95000c77bad0fbf0825454b7ff8670216449ee01c39e83328c7ce7cd9895c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page