A tiny package implementing functions of the split normal distribution compatible with Numpy and JAX.
Project description
Split Normal Distribution aka Two-Piece Normal Distribution
A tiny package implementing functions of the split normal distribution compatible with Numpy and JAX.
Install
pip install split-normal
Usage
import split_normal as sn
x = [-2.43953147, -1.31863936, -0.36272127, 0.77429312, 2.56092868]
p = [0.05, 0.25, 0.5, 0.75, 0.95]
loc = -1.
scale_1 = 1.
scale_2 = 2.
y_np = sn.numpy.pdf(x, loc, scale_1, scale_2)
print(y_np)
# [0.09437028 0.25279683 0.25279683 0.17943932 0.05450677]
p_np = sn.numpy.cdf(x, loc, scale_1, scale_2)
print(p_np)
# [0.05 0.25 0.5 0.75 0.95]
x_np = sn.numpy.ppf(p, loc, scale_1, scale_2)
print(x_np)
# [-2.43953147 -1.31863936 -0.36272127 0.77429312 2.56092868]
y_jax = sn.jax.pdf(x, loc, scale_1, scale_2)
print(y_jax)
# [0.09437027 0.2527968 0.2527968 0.17943932 0.05450677]
p_jax = sn.jax.cdf(x, loc, scale_1, scale_2)
print(p_jax)
# [0.04999999 0.25 0.5 0.75 0.95]
x_jax = sn.jax.ppf(p, loc, scale_1, scale_2)
print(x_jax)
# [-2.4395318 -1.3186394 -0.36272126 0.77429295 2.5609286]
Equations
Probability density function.
where .
CDF
Cummulative density function.
PPF
Percent point function (also called inverse CDF or quantile function).
Literature
Wallis, Kenneth F. “The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries.” Statistical Science, vol. 29, no. 1, 2014, pp. 106–112. JSTOR, www.jstor.org/stable/43288461.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
split-normal-0.1.0a3.tar.gz
(3.8 kB
view details)
File details
Details for the file split-normal-0.1.0a3.tar.gz
.
File metadata
- Download URL: split-normal-0.1.0a3.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200622 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7dcf7f7f69d2aff7ee45f88f3793073257ba9756b0f9fdaad593bad5bbf91a9 |
|
MD5 | 759a15d8cbc9b5f903b54041531bce4b |
|
BLAKE2b-256 | 73ba0daeb82e75941ba8d14b29dd7cc771e08aa13f43783733ddedf6d7b39918 |