Machine Learning dataset splitting for life sciences.
Project description
Splito - Dataset splitting for life sciences
Splito is a machine learning dataset splitting library for life sciences.
Installation
You can install splito
using pip:
pip install splito
You can use conda/mamba. Ask @maclandrol for credentials to the conda forge or for a token
mamba install -c conda-forge splito
Documentation
Find the documentation at https://splito-docs.datamol.io/.
Development lifecycle
Setup dev environment
micromamba create -n splito -f env.yml
micromamba activate splito
pip install --no-deps -e .
Tests
You can run tests locally with:
pytest
Code style
We use ruff
as a linter and formatter.
ruff check
ruff format
Documentation
You can build and run documentation server with:
mkdocs serve
License
Under the Apache-2.0 license. See LICENSE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
splito-0.1.4.tar.gz
(1.0 MB
view details)
Built Distribution
splito-0.1.4-py3-none-any.whl
(39.5 kB
view details)
File details
Details for the file splito-0.1.4.tar.gz
.
File metadata
- Download URL: splito-0.1.4.tar.gz
- Upload date:
- Size: 1.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a54ea50eb70a1ad4853c97430e78c388d18c1080def416f77f246d5ac27e9d83 |
|
MD5 | 3279e69cd89d39da50a30f29f6ac03b3 |
|
BLAKE2b-256 | 3481871a33760cd7c7a1adebc4298ba226cdeacd58deea0ff247240b80767ee8 |
File details
Details for the file splito-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: splito-0.1.4-py3-none-any.whl
- Upload date:
- Size: 39.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd652432611131b7bbb0e594f90b62e3cae4f32498a4f377956926b96c92f046 |
|
MD5 | 8119de3ec3d6163aea9f3b0fbae8d797 |
|
BLAKE2b-256 | 02ab8939e6fd7eac924a4a1f4f78e86348dd21118b91a0c9ff5f7c286930bf01 |