Skip to main content

Spatial Optimization in PySAL

Project description

spopt: Spatial Optimization

Regionalization, facility location, and transportation-oriented modeling

tag unittests codecov Documentation License Code style: black status DOI

Spopt is an open-source Python library for solving optimization problems with spatial data. Originating from the region module in PySAL (Python Spatial Analysis Library), it is under active development for the inclusion of newly proposed models and methods for regionalization, facility location, and transportation-oriented solutions.


import spopt, libpysal, geopandas, numpy
mexico = geopandas.read_file(libpysal.examples.get_path("mexicojoin.shp"))
mexico["count"] = 1
attrs = [f"PCGDP{year}" for year in range(1950, 2010, 10)]
w = libpysal.weights.Queen.from_dataframe(mexico)
mexico["count"], threshold_name, threshold, top_n = 1, "count", 4, 2
model = spopt.MaxPHeuristic(mexico, w, attrs, threshold_name, threshold, top_n)
mexico["maxp_new"] = model.labels_
mexico.plot(column="maxp_new", categorical=True, figsize=(12,8), ec="w");


from spopt.locate.coverage import MCLP
from spopt.locate.util import simulated_geo_points
import numpy
import geopandas
import pulp
import spaghetti

solver = pulp.PULP_CBC_CMD(msg=False)
lattice = spaghetti.regular_lattice((0, 0, 10, 10), 9, exterior=True)
ntw = spaghetti.Network(in_data=lattice)
street = spaghetti.element_as_gdf(ntw, arcs=True)
street_buffered = geopandas.GeoDataFrame(
client_points = simulated_geo_points(street_buffered, needed=CLIENT_COUNT, seed=CLIENT_SEED)
facility_points = simulated_geo_points(
    street_buffered, needed=FACILITY_COUNT, seed=FACILITY_SEED
ntw.snapobservations(client_points, "clients", attribute=True)
clients_snapped = spaghetti.element_as_gdf(
    ntw, pp_name="clients", snapped=True

ntw.snapobservations(facility_points, "facilities", attribute=True)
facilities_snapped = spaghetti.element_as_gdf(
    ntw, pp_name="facilities", snapped=True
cost_matrix = ntw.allneighbordistances(
mclp_from_cost_matrix = MCLP.from_cost_matrix(cost_matrix, ai, MAX_COVERAGE, p_facilities=P_FACILITIES)
mclp_from_cost_matrix = mclp_from_cost_matrix.solve(solver)


More examples can be found in the Tutorials section of the documentation.

All examples can be run interactively by launching this repository as a Binder.



spopt is available on the Python Package Index. Therefore, you can either install directly with pip from the command line:

$ pip install -U spopt

or download the source distribution (.tar.gz) and decompress it to your selected destination. Open a command shell and navigate to the decompressed folder. Type:

$ pip install .

You may also install the latest stable spopt via conda-forge channel by running:

$ conda install --channel conda-forge spopt


PySAL-spopt is under active development and contributors are welcome.

If you have any suggestions, feature requests, or bug reports, please open new issues on GitHub. To submit patches, please review PySAL's documentation for developers, the PySAL development guidelines, the spopt contributing guidelines before opening a pull request. Once your changes get merged, you’ll automatically be added to the Contributors List.


If you are having trouble, please create an issue, start a discussion, or talk to us in the gitter room.

Code of Conduct

As a PySAL-federated project, spopt follows the Code of Conduct under the PySAL governance model.


The project is licensed under the BSD 3-Clause license.


If you use PySAL-spopt in a scientific publication, we would appreciate using the following citation:

    author    = {Feng, Xin, and Gaboardi, James D. and Knaap, Elijah and Rey, Sergio J. and Wei, Ran},
    month     = {jan},
    year      = {2021},
    title     = {pysal/spopt},
    url       = {},
    doi       = {10.5281/zenodo.4444156},
    keywords  = {python,regionalization,spatial-optimization,location-modeling}


This project is/was partially funded through:

National Science Foundation Award #1831615: RIDIR: Scalable Geospatial Analytics for Social Science Research

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spopt-0.4.1.tar.gz (89.5 kB view hashes)

Uploaded source

Built Distribution

spopt-0.4.1-py3-none-any.whl (85.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page