Accurate and efficient spot detection with CNNs
Project description
Spotipy - Accurate and efficient spot detection with CNNs
Installation
Install the correct tensorflow for your CUDA version.
Clone the repo and install it
git clone git@github.com:maweigert/spotipy.git
pip install spotipy
Usage
A SpotNet
spot detection model can be instantiated from a custom Config
class:
from spotipy.model import Config, SpotNet
config = Config(
n_channel_in=1,
unet_n_depth=2,
train_learning_rate=3e-4,
train_patch_size=(128,128),
train_batch_size=4
)
model = SpotNet(config,name="mymodel", basedir="models")
Training
The training data for a SpotNet
model consists of input image X
and spot coordinates P
(in y,x
order):
import numpy as np
from spotipy.utils import points_to_prob
# generate some dummy data
def dummy_data(n_samples=16):
X = np.random.uniform(0,1,(n_samples, 128, 128))
P = np.random.randint(0,128,(n_samples, 21, 2))
for x, p in zip(X, P):
x[tuple(p.T.tolist())] = np.random.uniform(2,5,len(p))
Y = np.stack(tuple(points_to_prob(p[:,::-1], (128,128)) for p in P))
return X, Y
X,Y = dummy_data(128)
Xv,Yv = dummy_data(16)
model.train(X,Y, validation_data=[X, Y], epochs=10, steps_per_epoch=128)
model.optimize_thresholds(Xv,Yv)
Inference
Applying a trained SpotNet
:
img = dummy_data(1)[0][0]
prob, points = model.predict(img)
Contributors
Albert Dominguez Mantes, Antonio Herrera, Irina Khven, Anjali Schläppi, Gioele La Manno, Martin Weigert
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spotipy-detector-0.1.0.tar.gz
(48.6 kB
view details)
Built Distribution
File details
Details for the file spotipy-detector-0.1.0.tar.gz
.
File metadata
- Download URL: spotipy-detector-0.1.0.tar.gz
- Upload date:
- Size: 48.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa41bfe38ed98bf9445191f69bfb5bc49359b1fbce27952d7a201197c68ff342 |
|
MD5 | 83e925dc820a5994d106ec16619120c2 |
|
BLAKE2b-256 | feaad0ad51a9cb7dfe95f69244daf91d847522d14cfa94e449947092fd982cf9 |
File details
Details for the file spotipy_detector-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: spotipy_detector-0.1.0-py3-none-any.whl
- Upload date:
- Size: 22.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8ffd7e4fe8eafc65701b16ed86477fc4efa7358f297bd93c315cceae3438597 |
|
MD5 | 0766114521093db0782b5a9571a5b3ac |
|
BLAKE2b-256 | 2b6e7990eea38a7cfbe8b9f73cc2400fa5f66aaf80b36f15bbbf653f476039e2 |