Skip to main content

A Statistical Parameter Optimization Tool

Project description

https://img.shields.io/pypi/v/spotpy.png https://img.shields.io/travis/thouska/spotpy/master.png https://img.shields.io/badge/license-MIT-blue.png

Purpose

SPOTPY is a Python tool that enables the use of Computational optimization techniques for calibration, uncertainty and sensitivity analysis techniques of almost every (environmental-) model. The package is puplished in the open source journal PLoS One

Houska, T, Kraft, P, Chamorro-Chavez, A and Breuer, L; SPOTting Model Parameters Using a Ready-Made Python Package; PLoS ONE; 2015

The simplicity and flexibility enables the use and test of different algorithms without the need of complex codes:

sampler = spotpy.algorithms.sceua(model_setup())     # Initialize your model with a setup file
sampler.sample(10000)                                # Run the model
results = sampler.getdata()                          # Load the results
spotpy.analyser.plot_parametertrace(results)         # Show the results

Features

Complex formal Bayesian informal Bayesian and non-Bayesian algorithms bring complex tasks to link them with a given model. We want to make this task as easy as possible. Some features you can use with the SPOTPY package are:

  • Fitting models to evaluation data with different algorithms. Available algorithms are:

    • Monte Carlo (MC)

    • Markov-Chain Monte-Carlo (MCMC)

    • Maximum Likelihood Estimation (MLE)

    • Latin-Hypercube Sampling (LHS)

    • Simulated Annealing (SA)

    • Shuffled Complex Evolution Algorithm (SCE-UA)

    • Differential Evolution Markov Chain Algorithm (DE-MCz)

    • Differential Evolution Adaptive Metropolis Algorithm (DREAM)

    • RObust Parameter Estimation (ROPE)

    • Fourier Amplitude Sensitivity Test (FAST)

    • Artificial Bee Colony (ABC)

    • Fitness Scaled Chaotic Artificial Bee Colony (FSCABC)

  • Wide range of objective functions (also known as loss function, fitness function or energy function) to validate the sampled results. Available functions are

    • Bias

    • Procentual Bias (PBias)

    • Nash-Sutcliff (NSE)

    • logarithmic Nash-Sutcliff (logNSE)

    • logarithmic probability (logp)

    • Correlation Coefficient (r)

    • Coefficient of Determination (r^2)

    • Mean Squared Error (MSE)

    • Root Mean Squared Error (RMSE)

    • Mean Absolute Error (MAE)

    • Relative Root Mean Squared Error (RRMSE)

    • Agreement Index (AI)

    • Covariance, Decomposed MSE (dMSE)

    • Kling-Gupta Efficiency (KGE)

  • Wide range of likelihood functions to validate the sampled results:

    • logLikelihood

    • Gaussian Likelihood to account for Measurement Errors

    • Gaussian Likelihood to account for Heteroscedasticity

    • Likelihood to accounr for Autocorrelation

    • Generalized Likelihood Function

    • Lapacian Likelihood

    • Skewed Student Likelihood assuming homoscedasticity

    • Skewed Student Likelihood assuming heteroscedasticity

    • Skewed Student Likelihood assuming heteroscedasticity and Autocorrelation

    • Noisy ABC Gaussian Likelihood

    • ABC Boxcar Likelihood

    • Limits Of Acceptability

    • Inverse Error Variance Shaping Factor

    • Nash Sutcliffe Efficiency Shaping Factor

    • Exponential Transform Shaping Factor

    • Sum of Absolute Error Residuals

  • Wide range of hydrological signatures functions to validate the sampled results:

    • Slope

    • Flooding/Drought events

    • Flood/Drought frequency

    • Flood/Drought duration

    • Flood/Drought variance

    • Mean flow

    • Median flow

    • Skewness

    • compare percentiles of discharge

  • Prebuild parameter distribution functions:

    • Uniform

    • Normal

    • logNormal

    • Chisquare

    • Exponential

    • Gamma

    • Wald

    • Weilbull

  • Wide range to adapt algorithms to perform uncertainty-, sensitivity analysis or calibration of a model.

  • Multi-objective support

  • MPI support for fast parallel computing

  • A progress bar monitoring the sampling loops. Enables you to plan your coffee brakes.

  • Use of NumPy functions as often as possible. This makes your coffee brakes short.

  • Different databases solutions: ram storage for fast sampling a simple , csv tables the save solution for long duration samplings and a sql database for larger projects.

  • Automatic best run selecting and plotting

  • Parameter trace plotting

  • Parameter interaction plot including the Gaussian-kde function

  • Regression analysis between simulation and evaluation data

  • Posterior distribution plot

  • Convergence diagnostics with Gelman-Rubin and the Geweke plot

Documentation

Documentation is available at http://fb09-pasig.umwelt.uni-giessen.de/spotpy

Install

Installing SPOTPY is easy. Just use:

pip install spotpy

Or, after downloading the source code and making sure python is in your path:

python setup.py install

Support

  • Feel free to contact the authors of this tool for any support questions.

  • If you use this package for a scientific research paper, please cite SPOTPY.

  • Please report any bug through mail or GitHub: https://github.com/thouska/spotpy.

  • If you want to share your code with others, you are welcome to do this through GitHub: https://github.com/thouska/spotpy.

Contributing

Patches/enhancements/new algorithms and any other contributions to this package are very welcome!

  1. Fork it ( http://github.com/thouska/spotpy/fork )

  2. Create your feature branch (git checkout -b my-new-feature)

  3. Add your modifications

  4. Add short summary of your modifications on CHANGELOG.rst

  5. Commit your changes (git commit -m "Add some feature")

  6. Push to the branch (git push origin my-new-feature)

  7. Create new Pull Request

Getting started

Have a look at https://github.com/thouska/spotpy/tree/master/spotpy/examples and http://fb09-pasig.umwelt.uni-giessen.de/spotpy/Tutorial/2-Rosenbrock/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotpy-1.3.11.zip (389.7 kB view details)

Uploaded Source

Built Distributions

spotpy-1.3.11.win32.exe (585.4 kB view details)

Uploaded Source

spotpy-1.3.11-py2-none-any.whl (387.0 kB view details)

Uploaded Python 2

File details

Details for the file spotpy-1.3.11.zip.

File metadata

  • Download URL: spotpy-1.3.11.zip
  • Upload date:
  • Size: 389.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.11.zip
Algorithm Hash digest
SHA256 ee940403cba79c200bcf3f9a451a92bea4bcf6ca65769e2d831ed71a120c17ab
MD5 973bd263995aa61b95a41b3c36155c4c
BLAKE2b-256 fe66d3cdd2e969e6dd64442d693b0db96f982191661743206562bf95016f175b

See more details on using hashes here.

File details

Details for the file spotpy-1.3.11.win32.exe.

File metadata

  • Download URL: spotpy-1.3.11.win32.exe
  • Upload date:
  • Size: 585.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.11.win32.exe
Algorithm Hash digest
SHA256 a43da8be0ce24ede0f845d73a1d7885f376e4a2410b2900c9a2c8b286008d93a
MD5 2140b740cc8ac9c023c6b27ef7fbc5c9
BLAKE2b-256 eef088ccc20c0895842e8ee63c406649d4f3343d35c919c970915482d8a44786

See more details on using hashes here.

File details

Details for the file spotpy-1.3.11-py2-none-any.whl.

File metadata

File hashes

Hashes for spotpy-1.3.11-py2-none-any.whl
Algorithm Hash digest
SHA256 e3bbfad28d1e7d6c84de2cc0e35c0b9909cbdd9c45b67036177ae53a80e374f2
MD5 16913d64b691dca43d7f2c5896ecd1cd
BLAKE2b-256 d672f0abc1354c984904588a739eaff843160cdec0ac9e38aeb76312507bdd0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page