Skip to main content

A Statistical Parameter Optimization Tool

Project description

.. image:: https://img.shields.io/pypi/v/spotpy.png
:target: https://pypi.python.org/pypi/spotpy
.. image:: https://img.shields.io/travis/thouska/spotpy/master.png
:target: https://travis-ci.org/thouska/spotpy
.. image:: https://img.shields.io/badge/license-MIT-blue.png
:target: http://opensource.org/licenses/MIT
.. image:: https://coveralls.io/repos/github/thouska/spotpy/badge.svg?branch=master
:target: https://coveralls.io/github/thouska/spotpy?branch=master



Purpose
-------

SPOTPY is a Python tool that enables the use of Computational optimization techniques for calibration, uncertainty
and sensitivity analysis techniques of almost every (environmental-) model. The package is puplished in the open source journal PLoS One

Houska, T, Kraft, P, Chamorro-Chavez, A and Breuer, L; `SPOTting Model Parameters Using a Ready-Made Python Package <http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0145180>`_; PLoS ONE; 2015

The simplicity and flexibility enables the use and test of different
algorithms without the need of complex codes::

sampler = spotpy.algorithms.sceua(model_setup()) # Initialize your model with a setup file
sampler.sample(10000) # Run the model
results = sampler.getdata() # Load the results
spotpy.analyser.plot_parametertrace(results) # Show the results


Features
--------

Complex formal Bayesian informal Bayesian and non-Bayesian algorithms bring complex tasks to link them with a given model.
We want to make this task as easy as possible. Some features you can use with the SPOTPY package are:

* Fitting models to evaluation data with different algorithms.
Available algorithms are:

* Monte Carlo (`MC`)
* Markov-Chain Monte-Carlo (`MCMC`)
* Maximum Likelihood Estimation (`MLE`)
* Latin-Hypercube Sampling (`LHS`)
* Simulated Annealing (`SA`)
* Shuffled Complex Evolution Algorithm (`SCE-UA`)
* Differential Evolution Markov Chain Algorithm (`DE-MCz`)
* Differential Evolution Adaptive Metropolis Algorithm (`DREAM`)
* RObust Parameter Estimation (`ROPE`)
* Fourier Amplitude Sensitivity Test (`FAST`)
* Artificial Bee Colony (`ABC`)
* Fitness Scaled Chaotic Artificial Bee Colony (`FSCABC`)

* Wide range of objective functions (also known as loss function, fitness function or energy function) to validate the sampled results. Available functions are

* Bias
* Procentual Bias (`PBias`)
* Nash-Sutcliff (`NSE`)
* logarithmic Nash-Sutcliff (`logNSE`)
* logarithmic probability (`logp`)
* Correlation Coefficient (`r`)
* Coefficient of Determination (`r^2`)
* Mean Squared Error (`MSE`)
* Root Mean Squared Error (`RMSE`)
* Mean Absolute Error (`MAE`)
* Relative Root Mean Squared Error (`RRMSE`)
* Agreement Index (`AI`)
* Covariance, Decomposed MSE (`dMSE`)
* Kling-Gupta Efficiency (`KGE`)

* Wide range of likelihood functions to validate the sampled results:

* logLikelihood
* Gaussian Likelihood to account for Measurement Errors
* Gaussian Likelihood to account for Heteroscedasticity
* Likelihood to accounr for Autocorrelation
* Generalized Likelihood Function
* Lapacian Likelihood
* Skewed Student Likelihood assuming homoscedasticity
* Skewed Student Likelihood assuming heteroscedasticity
* Skewed Student Likelihood assuming heteroscedasticity and Autocorrelation
* Noisy ABC Gaussian Likelihood
* ABC Boxcar Likelihood
* Limits Of Acceptability
* Inverse Error Variance Shaping Factor
* Nash Sutcliffe Efficiency Shaping Factor
* Exponential Transform Shaping Factor
* Sum of Absolute Error Residuals

* Wide range of hydrological signatures functions to validate the sampled results:

* Slope
* Flooding/Drought events
* Flood/Drought frequency
* Flood/Drought duration
* Flood/Drought variance
* Mean flow
* Median flow
* Skewness
* compare percentiles of discharge

* Prebuild parameter distribution functions:

* Uniform
* Normal
* logNormal
* Chisquare
* Exponential
* Gamma
* Wald
* Weilbull

* Wide range to adapt algorithms to perform uncertainty-, sensitivity analysis or calibration
of a model.

* Multi-objective support

* MPI support for fast parallel computing

* A progress bar monitoring the sampling loops. Enables you to plan your coffee brakes.

* Use of NumPy functions as often as possible. This makes your coffee brakes short.

* Different databases solutions: `ram` storage for fast sampling a simple , `csv` tables
the save solution for long duration samplings and a `sql` database for larger projects.

* Automatic best run selecting and plotting

* Parameter trace plotting

* Parameter interaction plot including the Gaussian-kde function

* Regression analysis between simulation and evaluation data

* Posterior distribution plot

* Convergence diagnostics with Gelman-Rubin and the Geweke plot


Documentation
-------------

Documentation is available at `<http://fb09-pasig.umwelt.uni-giessen.de/spotpy>`__


Install
-------

Installing SPOTPY is easy. Just use:

pip install spotpy

Or, after downloading the source code and making sure python is in your path:

python setup.py install

Papers citing SPOTPY
-------
See `Google Scholar <https://scholar.google.de/scholar?cites=17155001516727704728&as_sdt=2005&sciodt=0,5&hl=de>`__ for a continuously updated list.


Support
-------

* Feel free to contact the authors of this tool for any support questions.

* If you use this package for a scientific research paper, please `cite <http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0145180>`_ SPOTPY.

* Please report any bug through mail or GitHub: https://github.com/thouska/spotpy.

* If you want to share your code with others, you are welcome to do this through GitHub: https://github.com/thouska/spotpy.


Contributing
------------
Patches/enhancements/new algorithms and any other contributions to this package are very welcome!

1. Fork it ( http://github.com/thouska/spotpy/fork )
2. Create your feature branch (``git checkout -b my-new-feature``)
3. Add your modifications
4. Add short summary of your modifications on ``CHANGELOG.rst``
5. Commit your changes (``git commit -m "Add some feature"``)
6. Push to the branch (``git push origin my-new-feature``)
7. Create new Pull Request


Getting started
---------------

Have a look at https://github.com/thouska/spotpy/tree/master/spotpy/examples and http://fb09-pasig.umwelt.uni-giessen.de/spotpy/Tutorial/2-Rosenbrock/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotpy-1.3.23.zip (566.9 kB view details)

Uploaded Source

Built Distributions

spotpy-1.3.23.win32.exe (1.0 MB view details)

Uploaded Source

spotpy-1.3.23-py2-none-any.whl (830.6 kB view details)

Uploaded Python 2

File details

Details for the file spotpy-1.3.23.zip.

File metadata

  • Download URL: spotpy-1.3.23.zip
  • Upload date:
  • Size: 566.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.23.zip
Algorithm Hash digest
SHA256 6ef683d02f8328c5d540b6c2f80b339d0a61a32b960642d6a7bc92002fb9d9ad
MD5 c09e2175508e36c0f97281f8bbe977a9
BLAKE2b-256 480b516d7ba55beeba2be0d16e4e31a3f39dd9c2a06cb600f46ebfe041682fcf

See more details on using hashes here.

File details

Details for the file spotpy-1.3.23.win32.exe.

File metadata

  • Download URL: spotpy-1.3.23.win32.exe
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.23.win32.exe
Algorithm Hash digest
SHA256 e2663774d4a37e26a23fb651dcb8185a0023e07818dd08550bee025ff1c92c22
MD5 93cea8f463a568c8fd1f7702ab49d856
BLAKE2b-256 6ab0374a7d64c0c870a45588350d1c2d653f9a1a816df7a92217b67d5b5a7243

See more details on using hashes here.

File details

Details for the file spotpy-1.3.23-py2-none-any.whl.

File metadata

File hashes

Hashes for spotpy-1.3.23-py2-none-any.whl
Algorithm Hash digest
SHA256 c3e6049f1df5ee7a7353f9f173a94c05b02060a370bc2b5c8894dabc1a55ffe0
MD5 e20fcceef355468bf242770b928817ee
BLAKE2b-256 334c0efce3f3aa27579ee6316a81b9fb0b157a96ee0a4ccd988c0c3742d72d85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page