Skip to main content

A Statistical Parameter Optimization Tool

Project description

https://img.shields.io/pypi/v/spotpy.png https://img.shields.io/travis/thouska/spotpy/master.png https://img.shields.io/badge/license-MIT-blue.png

Purpose

SPOTPY is a Python tool that enables the use of Computational optimization techniques for calibration, uncertainty and sensitivity analysis techniques of almost every (environmental-) model. The package is puplished in the open source journal PLoS One

Houska, T, Kraft, P, Chamorro-Chavez, A and Breuer, L; SPOTting Model Parameters Using a Ready-Made Python Package; PLoS ONE; 2015

The simplicity and flexibility enables the use and test of different algorithms without the need of complex codes:

sampler = spotpy.algorithms.sceua(model_setup())     # Initialize your model with a setup file
sampler.sample(10000)                                # Run the model
results = sampler.getdata()                          # Load the results
spotpy.analyser.plot_parametertrace(results)         # Show the results

Features

Complex formal Bayesian informal Bayesian and non-Bayesian algorithms bring complex tasks to link them with a given model. We want to make this task as easy as possible. Some features you can use with the SPOTPY package are:

  • Fitting models to evaluation data with different algorithms. Available algorithms are:

    • Monte Carlo (MC)

    • Markov-Chain Monte-Carlo (MCMC)

    • Maximum Likelihood Estimation (MLE)

    • Latin-Hypercube Sampling (LHS)

    • Simulated Annealing (SA)

    • Shuffled Complex Evolution Algorithm (SCE-UA)

    • Differential Evolution Markov Chain Algorithm (DE-MCz)

    • Differential Evolution Adaptive Metropolis Algorithm (DREAM)

    • RObust Parameter Estimation (ROPE)

    • Fourier Amplitude Sensitivity Test (FAST)

    • Artificial Bee Colony (ABC)

    • Fitness Scaled Chaotic Artificial Bee Colony (FSCABC)

  • Wide range of objective functions (also known as loss function, fitness function or energy function) to validate the sampled results. Available functions are

    • Bias

    • Procentual Bias (PBias)

    • Nash-Sutcliff (NSE)

    • logarithmic Nash-Sutcliff (logNSE)

    • logarithmic probability (logp)

    • Correlation Coefficient (r)

    • Coefficient of Determination (r^2)

    • Mean Squared Error (MSE)

    • Root Mean Squared Error (RMSE)

    • Mean Absolute Error (MAE)

    • Relative Root Mean Squared Error (RRMSE)

    • Agreement Index (AI)

    • Covariance, Decomposed MSE (dMSE)

    • Kling-Gupta Efficiency (KGE)

  • Wide range of likelihood functions to validate the sampled results:

    • logLikelihood

    • Gaussian Likelihood to account for Measurement Errors

    • Gaussian Likelihood to account for Heteroscedasticity

    • Likelihood to accounr for Autocorrelation

    • Generalized Likelihood Function

    • Lapacian Likelihood

    • Skewed Student Likelihood assuming homoscedasticity

    • Skewed Student Likelihood assuming heteroscedasticity

    • Skewed Student Likelihood assuming heteroscedasticity and Autocorrelation

    • Noisy ABC Gaussian Likelihood

    • ABC Boxcar Likelihood

    • Limits Of Acceptability

    • Inverse Error Variance Shaping Factor

    • Nash Sutcliffe Efficiency Shaping Factor

    • Exponential Transform Shaping Factor

    • Sum of Absolute Error Residuals

  • Wide range of hydrological signatures functions to validate the sampled results:

    • Slope

    • Flooding/Drought events

    • Flood/Drought frequency

    • Flood/Drought duration

    • Flood/Drought variance

    • Mean flow

    • Median flow

    • Skewness

    • compare percentiles of discharge

  • Prebuild parameter distribution functions:

    • Uniform

    • Normal

    • logNormal

    • Chisquare

    • Exponential

    • Gamma

    • Wald

    • Weilbull

  • Wide range to adapt algorithms to perform uncertainty-, sensitivity analysis or calibration of a model.

  • Multi-objective support

  • MPI support for fast parallel computing

  • A progress bar monitoring the sampling loops. Enables you to plan your coffee brakes.

  • Use of NumPy functions as often as possible. This makes your coffee brakes short.

  • Different databases solutions: ram storage for fast sampling a simple , csv tables the save solution for long duration samplings and a sql database for larger projects.

  • Automatic best run selecting and plotting

  • Parameter trace plotting

  • Parameter interaction plot including the Gaussian-kde function

  • Regression analysis between simulation and evaluation data

  • Posterior distribution plot

  • Convergence diagnostics with Gelman-Rubin and the Geweke plot

Documentation

Documentation is available at http://fb09-pasig.umwelt.uni-giessen.de/spotpy

Install

Installing SPOTPY is easy. Just use:

pip install spotpy

Or, after downloading the source code and making sure python is in your path:

python setup.py install

Support

  • Feel free to contact the authors of this tool for any support questions.

  • If you use this package for a scientific research paper, please cite SPOTPY.

  • Please report any bug through mail or GitHub: https://github.com/thouska/spotpy.

  • If you want to share your code with others, you are welcome to do this through GitHub: https://github.com/thouska/spotpy.

Contributing

Patches/enhancements/new algorithms and any other contributions to this package are very welcome!

  1. Fork it ( http://github.com/thouska/spotpy/fork )

  2. Create your feature branch (git checkout -b my-new-feature)

  3. Add your modifications

  4. Add short summary of your modifications on CHANGELOG.rst

  5. Commit your changes (git commit -m "Add some feature")

  6. Push to the branch (git push origin my-new-feature)

  7. Create new Pull Request

Getting started

Have a look at https://github.com/thouska/spotpy/tree/master/spotpy/examples and http://fb09-pasig.umwelt.uni-giessen.de/spotpy/Tutorial/2-Rosenbrock/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotpy-1.3.7.zip (315.9 kB view details)

Uploaded Source

Built Distributions

spotpy-1.3.7.win32.exe (511.7 kB view details)

Uploaded Source

spotpy-1.3.7-py2-none-any.whl (313.3 kB view details)

Uploaded Python 2

File details

Details for the file spotpy-1.3.7.zip.

File metadata

  • Download URL: spotpy-1.3.7.zip
  • Upload date:
  • Size: 315.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.7.zip
Algorithm Hash digest
SHA256 927f7bfe2c4636bf5d8bdebff3d65348f44dafdcfcb18590113385198e0bfc3f
MD5 ff046cab340791cfed818e853fe57275
BLAKE2b-256 9849caedff99ea970de65a99f389550102dd32179e51f452b6eb23d245a82f14

See more details on using hashes here.

File details

Details for the file spotpy-1.3.7.win32.exe.

File metadata

  • Download URL: spotpy-1.3.7.win32.exe
  • Upload date:
  • Size: 511.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for spotpy-1.3.7.win32.exe
Algorithm Hash digest
SHA256 5a5c26e4099128721040de864656a27d561bed6f8743dc6b896cd18e357e50ee
MD5 153c8b242a0f359f8176f27fd8982128
BLAKE2b-256 90dbb066df1a03d2bff6a586dfb18c46ec7ff7984ff05e445f3652b1d181ec2f

See more details on using hashes here.

File details

Details for the file spotpy-1.3.7-py2-none-any.whl.

File metadata

File hashes

Hashes for spotpy-1.3.7-py2-none-any.whl
Algorithm Hash digest
SHA256 b0e1d1e649a432d49e3f9aacf6e97e04222b5e448c6456f5ae4cd497da45c8c1
MD5 7ba4a8da8fb28903c376e22120431c3e
BLAKE2b-256 748aa16fcf52276496f86a9d97eedffcb366736ff60b98d58540ab5e97735915

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page