A Statistical Parameter Optimization Tool.
Project description
spotpy
A Statistical Parameter Optimization Tool for Python
Purpose
SPOTPY is a Python framework that enables the use of Computational optimization techniques for calibration, uncertainty and sensitivity analysis techniques of almost every (environmental-) model. The package is puplished in the open source journal PLoS One:
Houska, T., Kraft, P., Chamorro-Chavez, A. and Breuer, L.: SPOTting Model Parameters Using a Ready-Made Python Package, PLoS ONE, 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015
The simplicity and flexibility enables the use and test of different algorithms of almost any model, without the need of complex codes::
sampler = spotpy.algorithms.sceua(model_setup()) # Initialize your model with a setup file
sampler.sample(10000) # Run the model
results = sampler.getdata() # Load the results
spotpy.analyser.plot_parametertrace(results) # Show the results
Features
Complex algorithms bring complex tasks to link them with a model. We want to make this task as easy as possible. Some features you can use with the SPOTPY package are:
-
Fitting models to evaluation data with different algorithms. Available algorithms are:
- Monte Carlo (
MC
) - Markov-Chain Monte-Carlo (
MCMC
) - Maximum Likelihood Estimation (
MLE
) - Latin-Hypercube Sampling (
LHS
) - Simulated Annealing (
SA
) - Shuffled Complex Evolution Algorithm (
SCE-UA
) - Differential Evolution Markov Chain Algorithm (
DE-MCz
) - Differential Evolution Adaptive Metropolis Algorithm (
DREAM
) - RObust Parameter Estimation (
ROPE
) - Fourier Amplitude Sensitivity Test (
FAST
) - Artificial Bee Colony (
ABC
) - Fitness Scaled Chaotic Artificial Bee Colony (
FSCABC
) - Dynamically Dimensioned Search algorithm (
DDS
) - Pareto Archived - Dynamicallly Dimensioned Search algorithm (
PA-DDS
) - Fast and Elitist Multiobjective Genetic Algorithm (
NSGA-II
)
- Monte Carlo (
-
Wide range of objective functions (also known as loss function, fitness function or energy function) to validate the sampled results. Available functions are
- Bias
- PBias
- Nash-Sutcliffe (
NSE
) - logarithmic Nash-Sutcliffe (
logNSE
) - logarithmic probability (
logp
) - Correlation Coefficient (
r
) - Coefficient of Determination (
r^2
) - Mean Squared Error (
MSE
) - Root Mean Squared Error (
RMSE
) - Mean Absolute Error (
MAE
) - Relative Root Mean Squared Error (
RRMSE
) - Agreement Index (
AI
) - Covariance, Decomposed MSE (
dMSE
) - Kling-Gupta Efficiency (
KGE
) - Non parametric Kling-Gupta Efficiency (
KGE_non_parametric
)
-
Wide range of hydrological signatures functions to validate the sampled results:
- Slope
- Flooding/Drought events
- Flood/Drought frequency
- Flood/Drought duration
- Flood/Drought variance
- Mean flow
- Median flow
- Skewness
- compare percentiles of discharge
-
Prebuild parameter distribution functions:
- Uniform
- Normal
- logNormal
- Chisquare
- Exponential
- Gamma
- Wald
- Weilbull
-
Wide range to adapt algorithms to perform uncertainty-, sensitivity analysis or calibration of a model.
-
Multi-objective support
-
MPI support for fast parallel computing
-
A progress bar monitoring the sampling loops. Enables you to plan your coffee brakes.
-
Use of NumPy functions as often as possible. This makes your coffee brakes short.
-
Different databases solutions:
ram
storage for fast sampling a simple ,csv
tables the save solution for long duration samplings. -
Automatic best run selecting and plotting
-
Parameter trace plotting
-
Parameter interaction plot including the Gaussian-kde function
-
Regression analysis between simulation and evaluation data
-
Posterior distribution plot
-
Convergence diagnostics with Gelman-Rubin and the Geweke plot
Install
Classical Python options exist to install SPOTPY:
From PyPi:
pip install spotpy
From Conda-Forge:
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install spotpy
From Source:
python setup.py install
Support
-
Documentation: https://spotpy.readthedocs.io/en/latest/
-
Feel free to contact the authors of this tool for any support questions.
-
Please contact the authors in case of any bug.
-
If you use this package for a scientific research paper, please cite SPOTPY. It is peer-reviewed.
-
Patches/enhancements and any other contributions to this package are very welcome!
Getting started
Have a look at https://github.com/thouska/spotpy/tree/master/spotpy/examples and https://spotpy.readthedocs.io/en/latest/getting_started/
Contributing
Patches/enhancements/new algorithms and any other contributions to this package are very welcome!
- Fork it ( http://github.com/thouska/spotpy/fork )
- Create your feature branch (
git checkout -b my-new-feature
) - Add your modifications
- Add short summary of your modifications on
CHANGELOG.md
- Commit your changes (
git commit -m "Add some feature"
) - Push to the branch (
git push origin my-new-feature
) - Create new Pull Request
Papers citing SPOTPY
See Google Scholar for a continuously updated list.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file spotpy-1.6.1.tar.gz
.
File metadata
- Download URL: spotpy-1.6.1.tar.gz
- Upload date:
- Size: 7.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f16fda66fb015f4acf648718bad72c593918ef6c296483d662efbe6292d0217c |
|
MD5 | 5f93f147f060c9fcc51d4d705c55b463 |
|
BLAKE2b-256 | a12f49148ff94c5da354ff128d111988c5b624b9f7761f6d00865dbe71d8deae |
File details
Details for the file spotpy-1.6.1-py3-none-any.whl
.
File metadata
- Download URL: spotpy-1.6.1-py3-none-any.whl
- Upload date:
- Size: 7.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12429d063bea4a95a301eb9dcc94d9e3a9e53389f691bf7723e788efac74d767 |
|
MD5 | da8c23538c054eab831a2a2c4091011f |
|
BLAKE2b-256 | 5f4466d313ef1a026ad2bc4c26f164b4053000ffc47b7d8540690df8051d4dd7 |