Skip to main content

Sprite detection package

Project description

Sprite Detection

Features

  • Find the Most Common Color in an Image.
  • Find Sprites in an Image.
  • Draw Sprite Label Bounding Boxes.

Why this project is useful?

  • Used reasonable library for process Image.
  • Can be used on a big image.
  • Easy to understand.

Usage

  • Find the Most Common Color in an Image
>>> from PIL import Image
# JPEG image
>>> image = Image.open('first_image.jpg')
>>> image.mode
'RGB'
>>> find_most_common_color(image)
(0, 221, 204)
# PNG image
>>> image = Image.open('second_image.png')
>>> image.mode
'RGBA'
>>> find_most_common_color(image)
(0, 0, 0, 0)
# Grayscale image
>>> image = image.convert('L')
>>> image.mode
'L'
>>> find_most_common_color(image)
0
  • Find Sprites in an Image.
>>> from PIL import Image
>>> image = Image.open('metal_slug_single_sprite.png')
>>> sprites, label_map = find_sprites(image, background_color=(255, 255, 255))
>>> len(sprites)
1
>>> for label, sprite in sprites.items():
...     print(f"Sprite ({label}): [{sprite.top_left}, {sprite.bottom_right}] {sprite.width}x{sprite.height}")
Sprite (1): [(0, 0), (29, 37)] 30x38
>>> import pprint
>>> pprint.pprint(label_map, width=120)
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
 [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
 [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0],
 [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
 [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
 [0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
 [1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]]

Other example with the following image:

>>> from PIL import Image
>>> image = Image.open('optimized_sprite_sheet.png')
>>> sprites, label_map = find_sprites(image)
>>> len(sprites)
22
>>> for label, sprite in sprites.items():
...     print(f"Sprite ({label}): [{sprite.top_left}, {sprite.bottom_right}] {sprite.width}x{sprite.height}")
Sprite (25): [(383, 1), (455, 102)] 73x102
Sprite (43): [(9, 2), (97, 122)] 89x121
Sprite (26): [(110, 4), (195, 123)] 86x120
Sprite (46): [(207, 4), (291, 123)] 85x120
Sprite (16): [(305, 8), (379, 123)] 75x116
Sprite (53): [(349, 125), (431, 229)] 83x105
Sprite (61): [(285, 126), (330, 181)] 46x56
Sprite (100): [(1, 129), (101, 237)] 101x109
Sprite (106): [(106, 129), (193, 249)] 88x121
Sprite (93): [(183, 137), (278, 241)] 96x105
Sprite (95): [(268, 173), (355, 261)] 88x89
Sprite (178): [(6, 244), (101, 348)] 96x105
Sprite (185): [(145, 247), (245, 355)] 101x109
Sprite (141): [(343, 257), (417, 372)] 75x116
Sprite (169): [(102, 262), (142, 303)] 41x42
Sprite (188): [(249, 267), (344, 373)] 96x107
Sprite (192): [(412, 337), (448, 372)] 37x36
Sprite (256): [(89, 353), (184, 459)] 96x107
Sprite (234): [(11, 356), (104, 461)] 94x106
Sprite (207): [(188, 358), (281, 463)] 94x106
Sprite (229): [(384, 374), (456, 475)] 73x102
Sprite (248): [(286, 378), (368, 482)] 83x105
  • Draw Sprite Label Bounding Boxes.
>>> from PIL import Image
>>> image = Image.open('optimized_sprite_sheet.png')
>>> sprites, label_map = find_sprites(image)
>>> # Draw sprite masks and bounding boxes with the default white background color.
>>> sprite_label_image = create_sprite_labels_image(sprites, label_map)
>>> sprite_label_image.save('optimized_sprite_sheet_bounding_box_white_background.png')
>>> # Draw sprite masks and bounding boxes with a transparent background color.
>>> sprite_label_image = create_sprite_labels_image(sprites, label_map, background_color=(0, 0, 0, 0))
>>> sprite_label_image.save('optimized_sprite_sheet_bounding_box_transparent_background.png')
Sprite Masks with White Background Sprite Masks with Transparent Background

Built with

Authors

  • Le Quang Nhat (masternhat) - Intek student - Developer

Pull requests welcome!

Spotted an error? Something doesn't make sense? Send me a pull request!

Support

Ask your question here: https://www.google.com/

Everyone can Maintains && Contributing

Just follow steps:

  1. Fork it (https://github.com/intek-training-jsc/sprite-detection-masternhat.git)
  2. Create your feature branch (git checkout -b feature/fooBar)
  3. Commit your changes (git commit -am 'Add some fooBar')
  4. Push to the branch (git push origin feature/fooBar)
  5. Create a new Pull Request

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spriteutil_lqnhat-1.0.1.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

spriteutil_lqnhat-1.0.1-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file spriteutil_lqnhat-1.0.1.tar.gz.

File metadata

  • Download URL: spriteutil_lqnhat-1.0.1.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for spriteutil_lqnhat-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e3586f9ad9d99a4b525b6783e259bf5d841198946507df9ac14c90908f0b6d51
MD5 2b0c922a18c76c8b95c2ca78251f48e2
BLAKE2b-256 a0b6788c1ffd9db595efd94edb724f21ff6990b4f59c0f993722d3fb7fe6698e

See more details on using hashes here.

File details

Details for the file spriteutil_lqnhat-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: spriteutil_lqnhat-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.7

File hashes

Hashes for spriteutil_lqnhat-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 411ec8cc1405bbf4b0a9d9107168e8d6378c88cf4381c0d0dafb75c0ecc58b57
MD5 9ae4e2e4d7a887514db7d256929043b8
BLAKE2b-256 f511b2dd9cd734d2d95130c524466941f28bbc368d3848d941ff57eb847a4678

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page