Skip to main content

Python tool for slicing and dicing SQL

Project description

sql-athame

Python tool for slicing and dicing SQL. Its intended target is Postgres with asyncpg, though it also includes support for rendering to a SQLAlchemy TextClause.

Base query builder

Example

from sql_athame import sql


def get_orders(query):
    where = []

    if "id" in query:
        where.append(sql("id = {}", query["id"]))
    if "eventId" in query:
        where.append(sql("event_id = {}", query["eventId"]))
    if "startTime" in query:
        where.append(sql("start_time = {}", query["startTime"]))
    if "from" in query:
        where.append(sql("start_time >= {}", query["from"]))
    if "until" in query:
        where.append(sql("start_time < {}", query["until"]))

    return sql("SELECT * FROM orders WHERE {}", sql.all(where))


>>> list(get_orders({}))
['SELECT * FROM orders WHERE TRUE']

>>> list(get_orders({"id": "xyzzy"}))
['SELECT * FROM orders WHERE (id = $1)', 'xyzzy']

>>> list(get_orders({"eventId": "plugh", "from": "2019-05-01", "until": "2019-08-26"}))
['SELECT * FROM orders WHERE (event_id = $1) AND (start_time >= $2) AND (start_time < $3)',
 'plugh',
 '2019-05-01',
 '2019-08-26']


superquery = sql(
    """
    SELECT *
      FROM ({subquery}) sq
      JOIN other_table ot ON (ot.id = sq.id)
      WHERE ot.foo = {foo}
      LIMIT {limit}
    """,
    subquery=get_orders({"id": "xyzzy"}),
    foo="bork",
    limit=50,
)


>>> list(superquery)
['SELECT * FROM (SELECT * FROM orders WHERE (id = $1)) sq JOIN other_table ot ON (ot.id = sq.id) WHERE ot.foo = $2 LIMIT $3',
 'xyzzy',
 'bork',
 50]

API reference

from sql_athame import sql

sql(fmt: str, *args, **kwargs) -> Fragment

Creates a SQL Fragment from the fmt string. The fmt string contains literal SQL and may contain positional references, marked by {}, and named references, marked by {name}. Positional references must have a matching argument in *args. Named references may have a matching argument in **kwargs; if a named reference is not fullfilled by **kwargs it remains as a named slot to be filled later.

If a referenced argument is a Fragment, it is substituted into the SQL along with all of its embedded placeholders if any. Otherwise, it is treated as a placeholder value and substituted in place as a placeholder.

Fragment.query(self) -> Tuple[str, List[Any]]

Renders a SQL Fragment into a query string and list of placeholder parameters.

>>> q = sql("SELECT * FROM tbl WHERE qty > {qty}", qty=10)
>>> q.query()
('SELECT * FROM tbl WHERE qty > $1', [10])

If there are any unfilled slots ValueError will be raised.

>>> q = sql("SELECT * FROM tbl WHERE qty > {qty}")
>>> q.query()
ValueError: Unfilled slot: 'qty'
>>> q.fill(qty=10).query()
('SELECT * FROM tbl WHERE qty > $1', [10])

Fragment.__iter__(self) -> Iterator[Any]

A Fragment is an iterable which will return the query string followed by the placeholder parameters as returned by Fragment.query(self). This matches the (query, *args) argument pattern of the asyncpg API:

q = sql("SELECT * FROM tbl WHERE qty > {}", 10)
await conn.fetch(*q)

sql.list(parts: Iterable[Fragment]) -> Fragment

sql.list(*parts: Fragment) -> Fragment

Creates a SQL Fragment joining the fragments in parts together with commas.

>>> cols = [sql("a"), sql("b"), sql("c")]
>>> list(sql("SELECT {cols} FROM tbl", cols=sql.list(cols)))
['SELECT a, b, c FROM tbl']

sql.all(parts: Iterable[Fragment]) -> Fragment

sql.all(*parts: Fragment) -> Fragment

Creates a SQL Fragment joining the fragments in parts together with AND. If parts is empty, returns TRUE.

>>> where = [sql("a = {}", 42), sql("x <> {}", "foo")]
>>> list(sql("SELECT * FROM tbl WHERE {}", sql.all(where)))
['SELECT * FROM tbl WHERE (a = $1) AND (x <> $2)', 42, 'foo']
>>> list(sql("SELECT * FROM tbl WHERE {}", sql.all([])))
['SELECT * FROM tbl WHERE TRUE']

sql.any(parts: Iterable[Fragment]) -> Fragment

sql.any(*parts: Fragment) -> Fragment

Creates a SQL Fragment joining the fragments in parts together with OR. If parts is empty, returns FALSE.

>>> where = [sql("a = {}", 42), sql("x <> {}", "foo")]
>>> list(sql("SELECT * FROM tbl WHERE {}", sql.any(where)))
['SELECT * FROM tbl WHERE (a = $1) OR (x <> $2)', 42, 'foo']
>>> list(sql("SELECT * FROM tbl WHERE {}", sql.any([])))
['SELECT * FROM tbl WHERE FALSE']

Fragment.join(self, parts: Iterable[Fragment]) -> Fragment

Creates a SQL Fragment by joining the fragments in parts together with self.

>>> clauses = [sql("WHEN {} THEN {}", a, b) for a, b in ((sql("a"), 1), (sql("b"), 2))]
>>> case = sql("CASE {clauses} END", clauses=sql(" ").join(clauses))
>>> list(case)
['CASE WHEN a THEN $1 WHEN b THEN $2 END', 1, 2]

sql.literal(text: str) -> Fragment

Creates a SQL Fragment with the literal SQL text. No substitution of any kind is performed. Be very careful of SQL injection.

sql.identifier(name: str, prefix: Optional[str] = None) -> Fragment

Creates a SQL Fragment with a quoted identifier name, optionally with a dotted prefix.

>>> list(sql("SELECT {a} FROM tbl", a=sql.identifier("a", prefix="tbl")))
['SELECT "tbl"."a" FROM tbl']

sql.value(value: Any) -> Fragment

Creates a SQL Fragment with a single placeholder to value. Equivalent to:

sql("{}", value)

sql.escape(value: Any) -> Fragment

Creates a SQL Fragment with value escaped and embedded into the SQL. Types currently supported are strings, floats, ints, UUIDs, None, and sequences of the above.

>>> list(sql("SELECT * FROM tbl WHERE qty = ANY({})", sql.escape([1, 3, 5])))
['SELECT * FROM tbl WHERE qty = ANY(ARRAY[1, 3, 5])']

Compare to with a placeholder:

>>> list(sql("SELECT * FROM tbl WHERE qty = ANY({})", [1, 3, 5]))
['SELECT * FROM tbl WHERE qty = ANY($1)', [1, 3, 5]]

"Burning" an invariant value into the query can potentially help the query optimizer.

sql.slot(name: str) -> Fragment

Creates a SQL Fragment with a single empty slot named name. Equivalent to:

sql("{name}")

sql.unnest(data: Iterable[Sequence[Any]], types: Iterable[str]) -> Fragment

Creates a SQL Fragment containing an UNNEST expression with associated data.

The data is specified in tuples (in the "several database columns" sense, not necessarily the Python sense) in data, and the tuple Postgres types must be specified in types. The data is transposed into the correct form for UNNEST and embedded in placeholders in the Fragment.

>>> list(sql("SELECT * FROM {}", sql.unnest([("a", 1), ("b", 2), ("c", 3)], ["text", "integer"])))
['SELECT * FROM UNNEST($1::text[], $2::integer[])', ('a', 'b', 'c'), (1, 2, 3)]

Fragment.fill(self, **kwargs) -> Fragment

Creates a SQL Fragment by filling any empty slots in self with kwargs. Similar to sql subtitution, if a value is a Fragment it is substituted in-place, otherwise it is substituted as a placeholder.

Fragment.compile(self) -> Callable[..., Fragment]

Creates a function that when called with **kwargs will create a SQL Fragment equivalent to calling self.fill(**kwargs). This is optimized to do as much work as possible up front and can be considerably faster if repeated often.

Fragment.prepare(self) -> Tuple[str, Callable[..., List[Any]]]

Renders self into a SQL query string; returns that string and a function that when called with **kwargs containing the unfilled slots of self will return a list containing the placeholder values for self as filled with **kwargs.

>>> query, query_args = sql("UPDATE tbl SET foo={foo}, bar={bar} WHERE baz < {baz}", baz=10).prepare()
>>> query
'UPDATE tbl SET foo=$1, bar=$2 WHERE baz < $3'
>>> query_args(foo=1, bar=2)
[1, 2, 10]
>>> query_args(bar=42, foo=3)
[3, 42, 10]

As the name implies this is intended to be used in prepared statements:

query, query_args = sql("UPDATE tbl SET foo={foo}, bar={bar} WHERE baz < {baz}", baz=10).prepare()
stmt = await conn.prepare(query)
await stmt.execute(*query_args(foo=1, bar=2))
await stmt.execute(*query_args(bar=42, foo=3))

Fragment.sqlalchemy_text(self) -> sqlalchemy.sql.expression.TextClause

Renders self into a SQLAlchemy TextClause. Placeholder values will be bound with bindparams. Unfilled slots will be included as unbound parameters with their keys equal to the slot names. A placeholder value may be a SQLAlchemy BindParameter, in which case its value and type are used for the parameter created by this (and the key name is ignored); this allow control of the SQLAlchemy type used for the parameter.

Requires SQLAlchemy to be installed, otherwise raises ImportError.

>>> query = sql("SELECT * FROM tbl WHERE column = {}", 42)
>>> stmt = query.sqlalchemy_text()
>>> stmt._bindparams
{'_arg_0_140685932797232': BindParameter('_arg_0_140685932797232', 42, type_=Integer())}
>>> conn.execute(stmt).fetchall()

>>> query = sql("SELECT * FROM tbl WHERE column = {}", bindparam("ignored", 42, type_=Float()))
>>> stmt = query.sqlalchemy_text()
>>> stmt._bindparams
{'_arg_0_140294062155280': BindParameter('_arg_0_140294062155280', 42, type_=Float())}
>>> conn.execute(stmt).fetchall()

>>> query = sql("SELECT * FROM tbl WHERE column = {val}")
>>> stmt = query.sqlalchemy_text()
>>> stmt._bindparams
{'val': BindParameter('val', None, type_=NullType())}
>>> conn.execute(stmt, val=42).fetchall()

Dataclass helpers

Example

from dataclasses import dataclass, field
from datetime import date
from uuid import UUID, uuid4
from typing import Optional

from sql_athame import ModelBase, model_field_metadata as MD, sql


@dataclass
class Person(ModelBase, table_name="people", primary_key="id"):
    id: UUID
    name: str
    birthday: date
    title: Optional[str] = None
    extra: Optional[dict] = field(default=None, metadata=MD(type="JSONB"))


>>> list(Person.create_table_sql())
['CREATE TABLE IF NOT EXISTS "people" ('
 '"id" UUID NOT NULL, '
 '"name" TEXT NOT NULL, '
 '"birthday" DATE NOT NULL, '
 '"title" TEXT, '
 '"extra" JSONB, '
 'PRIMARY KEY ("id"))']

>>> list(Person.select_sql(where=sql("title = {}", "Director")))
['SELECT "id", "name", "birthday", "title", "extra" FROM "people" WHERE title = $1',
 'Director']

>>> people = [Person(uuid4(), "Bob", date(1974, 4, 3)), Person(uuid4(), "Anne", date(1985, 5, 4), extra={"awesome": "yes"})]
>>> people
[Person(id=UUID('8ecfe514-8fa3-48e5-8edb-fa810f5ed3f0'), name='Bob', birthday=datetime.date(1974, 4, 3), title=None, extra=None),
 Person(id=UUID('8d9bfadc-0026-4f6d-ae1b-ed89d1077f66'), name='Anne', birthday=datetime.date(1985, 5, 4), title=None, extra={'awesome': 'yes'})]

>>> list(Person.insert_multiple_sql(people))
['INSERT INTO "people" ("id", "name", "birthday", "title", "extra")'
 ' SELECT * FROM UNNEST($1::UUID[], $2::TEXT[], $3::DATE[], $4::TEXT[], $5::TEXT[]::JSONB[])',
 (UUID('8ecfe514-8fa3-48e5-8edb-fa810f5ed3f0'),
  UUID('8d9bfadc-0026-4f6d-ae1b-ed89d1077f66')),
 ('Bob', 'Anne'),
 (datetime.date(1974, 4, 3), datetime.date(1985, 5, 4)),
 (None, None),
 [None, '{"awesome": "yes"}']]

>>> list(Person.upsert_sql(Person.insert_multiple_sql(people)))
['INSERT INTO "people" ("id", "name", "birthday", "title", "extra")'
 ' SELECT * FROM UNNEST($1::UUID[], $2::TEXT[], $3::DATE[], $4::TEXT[], $5::TEXT[]::JSONB[])'
 ' ON CONFLICT ("id") DO UPDATE'
 ' SET "name"=EXCLUDED."name", "birthday"=EXCLUDED."birthday", "title"=EXCLUDED."title", "extra"=EXCLUDED."extra"',
 (UUID('8ecfe514-8fa3-48e5-8edb-fa810f5ed3f0'),
  UUID('8d9bfadc-0026-4f6d-ae1b-ed89d1077f66')),
 ('Bob', 'Anne'),
 (datetime.date(1974, 4, 3), datetime.date(1985, 5, 4)),
 (None, None),
 [None, '{"awesome": "yes"}']]

API reference

TODO, for now read the source.

License

MIT.


Copyright (c) 2019, 2020 Brian Downing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sql-athame-0.3.16.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

sql_athame-0.3.16-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file sql-athame-0.3.16.tar.gz.

File metadata

  • Download URL: sql-athame-0.3.16.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Linux/4.15.0-1106-aws

File hashes

Hashes for sql-athame-0.3.16.tar.gz
Algorithm Hash digest
SHA256 dce4dc813e3cbb6e331d53a88cca583d766c20c4c6e41511b7416534a644ff6d
MD5 ca7e233436acdf1eedf95a56269ffd56
BLAKE2b-256 9faaccfda223d2dade59b9b8faf97cf2eadb818f233d212dfeb608a657dd9b57

See more details on using hashes here.

File details

Details for the file sql_athame-0.3.16-py3-none-any.whl.

File metadata

  • Download URL: sql_athame-0.3.16-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Linux/4.15.0-1106-aws

File hashes

Hashes for sql_athame-0.3.16-py3-none-any.whl
Algorithm Hash digest
SHA256 63b54e72018b4de8369c0ed7e5b80532f008a1a5c5faf5cf3d383ae92dc7890d
MD5 767ed782e38f86c4fc07c0db55cc6631
BLAKE2b-256 f2b124b6687aaff0e588c3829e25af75ac08a23397c3f2ed6e28b424c537e259

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page