Skip to main content

Allows you to create objects for parts of SQL query commands. Also to combine these objects by joining them, adding or removing parts...

Project description

SQL_Blocks

1 - You can assemble a simple object that will then be converted into an SQL command:

a = Select('Actor') # --> SELECT * FROM Actor act

Note that an alias "act" has been added.

You can specify your own alias: a = Select('Actor a')


2 - You can also add a field, like this...

  • a = Select('Actor a', name=Field)

  • Here are another ways to add a field:

    • Select('Actor a', name=Distinct )

    • Select('Actor a', name=NamedField('actors_name'))

    • Select( 'Actor a', name=NamedField('actors_name', Distinct) )


3 - To set conditions, use Where:

  • For example, a = Select(... age=Where.gt(45) )

    Some possible conditions:

    • field=Where.eq(value) - ...the field is EQUAL to the value;
    • field=Where.gt(value) - ...the field is GREATER than the value;
    • field=Where.lt(value) - ...the field is LESS than the value;

    3.1 -- If you want to filter the field on a range of values:

    a = Select( 'Actor a', age=Between(45, 69) )

    3.2 -- Sub-queries:

query = Select('Movie m', title=Field,
    id=SelectIN(
        'Review r',
        rate=Where.gt(4.5),
        movie_id=Distinct
    )
)

>> print(query)

    SELECT
        m.title
    FROM
        Movie m
    WHERE
        m.id IN (
            SELECT DISTINCT r.movie
            FROM Review r WHERE r.rate > 4.5
        )

3.3 -- Optional conditions:

    OR=Options(
        genre=Where.eq("Sci-Fi"),
        awards=Where.like("Oscar")
    )

Could be AND=Options(...)

3.4 -- Negative conditions use the Not class instead of Where

based_on_book=Not.is_null()

3.5 -- List of values

hash_tag=Where.list(['space', 'monster', 'gore'])

4 - A field can be two things at the same time:

  • m = Select('Movie m' release_date=[Field, OrderBy])
    • This means that the field will appear in the results and also that the query will be ordered by that field.
  • Applying GROUP BY to item 3.2, it would look like this:
    SelectIN(
        'Review r', movie=[GroupBy, Distinct],
        rate=Having.avg(Where.gt(4.5))
    )
    

5 - Relationships:

    query = Select('Actor a', name=Field,
        cast=Select('Cast c', id=PrimaryKey)
    )

>> print(query)

SELECT
    a.name
FROM
    Actor a
    JOIN Cast c ON (a.cast = c.id)    

6 - The reverse process (parse):

text = """
        SELECT
                cas.role,
                m.title,
                m.release_date,
                a.name as actors_name
        FROM
                Actor a
                LEFT JOIN Cast cas ON (a.cast = cas.id)
                LEFT JOIN Movie m ON (cas.movie = m.id)
        WHERE
                (
                    m.genre = 'Sci-Fi'
                    OR
                    m.awards LIKE '%Oscar%'
                )
                AND a.age <= 69 AND a.age >= 45
        ORDER BY
                m.release_date DESC
"""

a, c, m = Select.parse(text)

6.1 --- print(a)

    SELECT
            a.name as actors_name
    FROM
            Actor a
    WHERE
            a.age <= 69
            AND a.age >= 45

6.2 --- print(c)

SELECT
        c.role
FROM
        Cast c

6.3 --- print(m)

SELECT
        m.title,
        m.release_date
FROM
        Movie m
WHERE
        ( m.genre = 'Sci-Fi' OR m.awards LIKE '%Oscar%' )
ORDER BY
        m.release_date DESC

6.4 --- print(a+c)

SELECT
        a.name as actors_name,
        cas.role
FROM
        Actor a
        JOIN Cast cas ON (a.cast = cas.id)
WHERE
        a.age >= 45
        AND a.age <= 69

6.5 --- print(c+m)

... or print(m+c)

SELECT
        cas.role,
        m.title,
        m.release_date,
        m.director
FROM
        Cast cas
        JOIN Movie m ON (cas.movie = m.id)
WHERE
        ( m.genre = 'Sci-Fi' OR m.awards LIKE '%Oscar%' )
        AND m.director LIKE '%Coppola%'
ORDER BY
        m.release_date,
        m.director

7 - You can add or delete attributes directly in objects:

  • a(gender=Field)
  • m.delete('director')

8 - Defining relationship on separate objects:

a = Select...
c = Select...
m = Select...

a + c => ERROR: "No relationship found between Actor and Cast"

8.1 - But...

a( cast=ForeignKey('Cast') )
c(id=PrimaryKey)

a + c => Ok!

8.2

c( movie=ForeignKey('Movie') )
m(id=PrimaryKey)

c + m => Ok!

m + c => Ok!


9 - Comparing objects

9.1

        a1 = Select.parse('''
                SELECT gender, max(age) FROM Actor act
                WHERE act.age <= 69 AND act.age >= 45
                GROUP BY gender
            ''')[0]

        a2 = Select('Actor',
            age=Between(45, 69), gender=GroupBy,
            gender=[GroupBy, Field]
        )       

a1 == a2 # --- True!

9.2

    m1 = Select.parse("""
        SELECT title, release_date FROM Movie m ORDER BY release_date 
        WHERE m.genre = 'Sci-Fi' AND m.awards LIKE '%Oscar%'
    """)[0]

    m2 = Select.parse("""
        SELECT release_date, title
        FROM Movie m
        WHERE m.awards LIKE '%Oscar%' AND m.genre = 'Sci-Fi'
        ORDER BY release_date 
    """)[0]

m1 == m2 # --- True!

9.3

best_movies = SelectIN(
    Review=Table('role'),
    rate=[GroupBy, Having.avg(Where.gt(4.5))]
)
m1 = Select(
    Movie=Table('title,release_date),
    id=best_movies
)

sql = "SELECT rev.role FROM Review rev GROUP BY rev.rate HAVING Avg(rev.rate) > 4.5"
m2 = Select(
    'Movie', release_date=Field, title=Field,
    id=Where(f"IN ({sql})")
)

m1 == m2 # --- True!


10 - CASE...WHEN...THEN

Select(
    'Product',
    label=Case('price').when(
        lt(50), 'cheap'
    ).when(
        gt(100), 'expensive'
    ).else_value(
        'normal'
    )
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sql_blocks-0.0.4.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

sql_blocks-0.0.4-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file sql_blocks-0.0.4.tar.gz.

File metadata

  • Download URL: sql_blocks-0.0.4.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for sql_blocks-0.0.4.tar.gz
Algorithm Hash digest
SHA256 a02cd8874bf48004038df74488daa09f84f01a5e81a9a53dd43bb895fc90d986
MD5 ba66e3505f30dbbec66a39fe9febe81a
BLAKE2b-256 9eb707b2d1ed1758293fb8e8d204d57e5977ca1a12a3bdd8bddce98784854663

See more details on using hashes here.

File details

Details for the file sql_blocks-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: sql_blocks-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 8.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for sql_blocks-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f476741fd0215c0262634ee56a0c5506d00e2d7feb76fedb848769674be7bf6d
MD5 72353335351a64c6178c0e3932f2de86
BLAKE2b-256 febd007a7d864cdb86da943098f354df8e09a7173af01e0043a8411ca0303406

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page