Skip to main content

Allows you to create objects for parts of SQL query commands. Also to combine these objects by joining them, adding or removing parts...

Project description

SQL_Blocks

1 - You can assemble a simple object that will then be converted into an SQL command:

a = Select('Actor') # --> SELECT * FROM Actor act

Note that an alias "act" has been added.

You can specify your own alias: a = Select('Actor a')


2 - You can also add a field, like this...

  • a = Select('Actor a', name=Field)

  • Here are another ways to add a field:

    • Select('Actor a', name=Distinct )

    • Select('Actor a', name=NamedField('actors_name'))

    • Select( 'Actor a', name=NamedField('actors_name', Distinct) )


3 - To set conditions, use Where:

  • For example, a = Select(... age=Where.gt(45) )

    Some possible conditions:

    • field=Where.eq(value) - ...the field is EQUAL to the value;
    • field=Where.gt(value) - ...the field is GREATER than the value;
    • field=Where.lt(value) - ...the field is LESS than the value;

    3.1 -- If you want to filter the field on a range of values:

    a = Select( 'Actor a', age=Between(45, 69) )

    3.2 -- Sub-queries:

query = Select('Movie m', title=Field,
    id=SelectIN(
        'Review r',
        rate=Where.gt(4.5),
        movie_id=Distinct
    )
)

>> print(query)

    SELECT
        m.title
    FROM
        Movie m
    WHERE
        m.id IN (
            SELECT DISTINCT r.movie
            FROM Review r WHERE r.rate > 4.5
        )

3.3 -- Optional conditions:

    OR=Options(
        genre=Where.eq("Sci-Fi"),
        awards=Where.like("Oscar")
    )

Could be AND=Options(...)

3.4 -- Negative conditions use the Not class instead of Where

based_on_book=Not.is_null()

3.5 -- List of values

hash_tag=Where.list(['space', 'monster', 'gore'])

4 - A field can be two things at the same time:

  • m = Select('Movie m' release_date=[Field, OrderBy])
    • This means that the field will appear in the results and also that the query will be ordered by that field.
  • Applying GROUP BY to item 3.2, it would look like this:
    SelectIN(
        'Review r', movie=[GroupBy, Distinct],
        rate=Having.avg(Where.gt(4.5))
    )
    

5 - Relationships:

    query = Select('Actor a', name=Field,
        cast=Select('Cast c', id=PrimaryKey)
    )

>> print(query)

SELECT
    a.name
FROM
    Actor a
    JOIN Cast c ON (a.cast = c.id)    

6 - The reverse process (parse):

text = """
        SELECT
                cas.role,
                m.title,
                m.release_date,
                a.name as actors_name
        FROM
                Actor a
                LEFT JOIN Cast cas ON (a.cast = cas.id)
                LEFT JOIN Movie m ON (cas.movie = m.id)
        WHERE
                (
                    m.genre = 'Sci-Fi'
                    OR
                    m.awards LIKE '%Oscar%'
                )
                AND a.age <= 69 AND a.age >= 45
        ORDER BY
                m.release_date DESC
"""

a, c, m = Select.parse(text)

6.1 --- print(a)

    SELECT
            a.name as actors_name
    FROM
            Actor a
    WHERE
            a.age <= 69
            AND a.age >= 45

6.2 --- print(c)

SELECT
        c.role
FROM
        Cast c

6.3 --- print(m)

SELECT
        m.title,
        m.release_date
FROM
        Movie m
WHERE
        ( m.genre = 'Sci-Fi' OR m.awards LIKE '%Oscar%' )
ORDER BY
        m.release_date DESC

6.4 --- print(a+c)

SELECT
        a.name as actors_name,
        cas.role
FROM
        Actor a
        JOIN Cast cas ON (a.cast = cas.id)
WHERE
        a.age >= 45
        AND a.age <= 69

6.5 --- print(c+m)

... or print(m+c)

SELECT
        cas.role,
        m.title,
        m.release_date,
        m.director
FROM
        Cast cas
        JOIN Movie m ON (cas.movie = m.id)
WHERE
        ( m.genre = 'Sci-Fi' OR m.awards LIKE '%Oscar%' )
        AND m.director LIKE '%Coppola%'
ORDER BY
        m.release_date,
        m.director

7 - You can add or delete attributes directly in objects:

  • a(gender=Field)
  • m.delete('director')

8 - Defining relationship on separate objects:

a = Select...
c = Select...
m = Select...

a + c => ERROR: "No relationship found between Actor and Cast"

8.1 - But...

a( cast=ForeignKey('Cast') )
c(id=PrimaryKey)

a + c => Ok!

8.2

c( movie=ForeignKey('Movie') )
m(id=PrimaryKey)

c + m => Ok!

m + c => Ok!


9 - Comparing objects

9.1

        a1 = Select.parse('''
                SELECT gender, Max(act.age) FROM Actor act
                WHERE act.age <= 69 AND act.age >= 45
                GROUP BY gender
            ''')[0]

        a2 = Select('Actor',
            age=[ Between(45, 69), Max ],
            gender=[GroupBy, Field]
        )       

a1 == a2 # --- True!

9.2

    m1 = Select.parse("""
        SELECT title, release_date FROM Movie m ORDER BY release_date 
        WHERE m.genre = 'Sci-Fi' AND m.awards LIKE '%Oscar%'
    """)[0]

    m2 = Select.parse("""
        SELECT release_date, title
        FROM Movie m
        WHERE m.awards LIKE '%Oscar%' AND m.genre = 'Sci-Fi'
        ORDER BY release_date 
    """)[0]

m1 == m2 # --- True!

9.3

best_movies = SelectIN(
    Review=Table('role'),
    rate=[GroupBy, Having.avg(Where.gt(4.5))]
)
m1 = Select(
    Movie=Table('title,release_date),
    id=best_movies
)

sql = "SELECT rev.role FROM Review rev GROUP BY rev.rate HAVING Avg(rev.rate) > 4.5"
m2 = Select(
    'Movie', release_date=Field, title=Field,
    id=Where(f"IN ({sql})")
)

m1 == m2 # --- True!


10 - CASE...WHEN...THEN

Select(
    'Product',
    label=Case('price').when(
        Where.lt(50), 'cheap'
    ).when(
        Where.gt(100), 'expensive'
    ).else_value(
        'normal'
    )
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sql_blocks-0.0.6.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

sql_blocks-0.0.6-py3-none-any.whl (8.9 kB view details)

Uploaded Python 3

File details

Details for the file sql_blocks-0.0.6.tar.gz.

File metadata

  • Download URL: sql_blocks-0.0.6.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for sql_blocks-0.0.6.tar.gz
Algorithm Hash digest
SHA256 537dfab8c16cdcd548d76d1fb4ca8001cc9f539a71925a560968828478d21650
MD5 518b2d9a770de9aa307f8052c945fcdf
BLAKE2b-256 04072d4136a948f6f701625f2936ece69d81a6c28560a462293d369f65328bb8

See more details on using hashes here.

File details

Details for the file sql_blocks-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: sql_blocks-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 8.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for sql_blocks-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 bdee84bd2750712c3019c463ed5ebc46cb81f30ff0bf3160ef025532f7bbf5df
MD5 3ff861d76323cdca54f5a23511ff37c2
BLAKE2b-256 1a7e78b61bb0464db8987665124605d6ac64403bbbf109c487b04a0dd66dd16d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page