Skip to main content

A library to filter SQLAlchemy queries.

Project description

SQLAlchemy-filters
==================

.. pull-quote::

Filter, sort and paginate SQLAlchemy query objects.
Ideal for exposing these actions over a REST API.

Filtering
---------

Assuming that we have a SQLAlchemy `query` object:

.. code-block:: python

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base


class Base(object):
id = Column(Integer, primary_key=True)
name = Column(String(50), nullable=False)
count = Column(Integer, nullable=True)


Base = declarative_base(cls=Base)


class Foo(Base):

__tablename__ = 'foo'

# ...

query = session.query(Foo)

Then we can apply filters to that ``query`` object (multiple times):

.. code-block:: python

from sqlalchemy_filters import apply_filters

# `query` should be a SQLAlchemy query object

filter_spec = [{'field': 'name', 'op': '==', 'value': 'name_1'}]
filtered_query = apply_filters(query, filter_spec)

more_filters = [{'field': 'foo_id', 'op': 'is_not_null'}]
filtered_query = apply_filters(filtered_query, more_filters)

result = filtered_query.all()

It is also possible to filter queries that contain multiple models, including joins:

.. code-block:: python

class Bar(Base):

__tablename__ = 'bar'
foo_id = Column(Integer, ForeignKey('foo.id'))


.. code-block:: python

query = session.query(Foo).join(Bar)

filter_spec = [
{'model': 'Foo', field': 'name', 'op': '==', 'value': 'name_1'},
{'model': 'Bar', field': 'count', 'op': '>=', 'value': 5},
]
filtered_query = apply_filters(query, filter_spec)

result = filtered_query.all()

You must specify the `model` key in each filter if the query is against more than one model.

Note that we can also apply filters to queries defined by fields or functions:

.. code-block:: python

query_alt_1 = session.query(Foo.id, Foo.name)
query_alt_2 = session.query(func.count(Foo.id))


Restricted Loads
----------------

You can restrict the fields that SQLAlchemy loads from the database by using
the `apply_loads` function:

.. code-block:: python

query = session.query(Foo, Bar).join(Bar)
load_spec = [
{'model': 'Foo', 'fields': ['name']},
{'model': 'Bar', 'fields': ['count']}
]
query = apply_loads(query, load_spec) # will load only Foo.name and Bar.count


The effect of the `apply_loads` function is to _defer_ the load of any other fields to when/if they're accessed, rather than loading them when the query is executed. It only applies to fields that would be loaded during normal query execution.


Effect on joined queries
^^^^^^^^^^^^^^^^^^^^^^^^

The default SQLAlchemy join is lazy, meaning that columns from the joined table are loaded only when required. Therefore `apply_loads` has limited effect in the following scenario:

.. code-block:: python

query = session.query(Foo).join(Bar)
load_spec = [
{'model': 'Foo', 'fields': ['name']}
{'model': 'Bar', 'fields': ['count']} # ignored
]
query = apply_loads(query, load_spec) # will load only Foo.name


`apply_loads` cannot be applied to columns that are loaded as `joined eager loads <http://docs.sqlalchemy.org/en/latest/orm/loading_relationships.html#joined-eager-loading>`_. This is because a joined eager load does not add the joined model to the original query, as explained `here <http://docs.sqlalchemy.org/en/latest/orm/loading_relationships.html#the-zen-of-joined-eager-loading>`_

The following would produce an error:

.. code-block:: python

query = session.query(Foo).options(joinedload(Bar))
load_spec = [
{'model': 'Foo', 'fields': ['name']}
{'model': 'Bar', 'fields': ['count']} # invalid
]
query = apply_loads(query, load_spec) # error! query does not contain model Bar


If you wish to perform a joined load with restricted columns, you must specify the columns as part of the joined load, rather than with `apply_loads`:

.. code-block:: python

query = session.query(Foo).options(joinedload(Bar).load_only('count'))
load_spec = [
{'model': 'Foo', 'fields': ['name']}
]
query = apply_loads(query. load_spec) # will load ony Foo.name and Bar.count


Sort
----

.. code-block:: python

from sqlalchemy_filters import apply_sort

# `query` should be a SQLAlchemy query object

sort_spec = [
{'model': 'Foo', field': 'name', 'direction': 'asc'},
{'model': 'Bar', field': 'id', 'direction': 'desc'},
]
sorted_query = apply_sort(query, sort_spec)

result = sorted_query.all()


Pagination
----------

.. code-block:: python

from sqlalchemy_filters import apply_pagination

# `query` should be a SQLAlchemy query object

query, pagination = apply_pagination(query, page_number=1, page_size=10)

page_size, page_number, num_pages, total_results = pagination

assert 10 == len(query)
assert 10 == page_size == pagination.page_size
assert 1 == page_number == pagination.page_number
assert 3 == num_pages == pagination.num_pages
assert 22 == total_results == pagination.total_results

Filters format
--------------

Filters must be provided in a list and will be applied sequentially.
Each filter will be a dictionary element in that list, using the
following format:

.. code-block:: python

filter_spec = [
{'model': 'model_name', 'field': 'field_name', 'op': '==', 'value': 'field_value'},
{'model': 'model_name', 'field': 'field_2_name', 'op': '!=', 'value': 'field_2_value'},
# ...
]

The `model` key is optional if the query being filtered only applies to one model.

If there is only one filter, the containing list may be omitted:

.. code-block:: python

filter_spec = {'field': 'field_name', 'op': '==', 'value': 'field_value'}

Where ``field`` is the name of the field that will be filtered using the
operator provided in ``op`` (optional, defaults to `==`) and the
provided ``value`` (optional, depending on the operator).

This is the list of operators that can be used:

- ``is_null``
- ``is_not_null``
- ``==``, ``eq``
- ``!=``, ``ne``
- ``>``, ``gt``
- ``<``, ``lt``
- ``>=``, ``ge``
- ``<=``, ``le``
- ``like``
- ``in``
- ``not_in``

Boolean Functions
*****************
``and``, ``or``, and ``not`` functions can be used and nested within the filter specification:

.. code-block:: python

filter_spec = [
{
'or': [
{
'and': [
{'field': 'field_name', 'op': '==', 'value': 'field_value'},
{'field': 'field_2_name', 'op': '!=', 'value': 'field_2_value'},
]
},
{
'not': [
{'field': 'field_3_name', 'op': '==', 'value': 'field_3_value'}
]
},
],
}
]


Note: ``or`` and ``and`` must reference a list of at least one element. ``not`` must reference a list of exactly one element.

Sort format
-----------

Sort elements must be provided as dictionaries in a list and will be
applied sequentially:

.. code-block:: python

sort_spec = [
{'model': 'Foo', 'field': 'name', 'direction': 'asc'},
{'model': 'Bar', 'field': 'id', 'direction': 'desc'},
# ...
]

Where ``field`` is the name of the field that will be sorted using the
provided ``direction``.

The `model` key is optional if the query being sorted only applies to one model.


Running tests
-------------

There are some Makefile targets that can be used to run the tests. A
test database will be created, used during the tests and destroyed
afterwards.

The default configuration uses both SQLite and MySQL (if the driver is
installed) to run the tests, with the following URIs:

.. code-block:: shell

sqlite+pysqlite:///test_sqlalchemy_filters.db
mysql+mysqlconnector://root:@localhost:3306/test_sqlalchemy_filters

Example of usage:

.. code-block:: shell

$ # using default settings
$ make test
$ make coverage

$ # overriding DB parameters
$ ARGS='--mysql-test-db-uri mysql+mysqlconnector://root:@192.168.99.100:3340/test_sqlalchemy_filters' make test
$ ARGS='--sqlite-test-db-uri sqlite+pysqlite:///test_sqlalchemy_filters.db' make test

$ ARGS='--mysql-test-db-uri mysql+mysqlconnector://root:@192.168.99.100:3340/test_sqlalchemy_filters' make coverage
$ ARGS='--sqlite-test-db-uri sqlite+pysqlite:///test_sqlalchemy_filters.db' make coverage


License
-------

Apache 2.0. See LICENSE for details.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy-filters-0.6.0.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_filters-0.6.0-py2-none-any.whl (14.0 kB view details)

Uploaded Python 2

File details

Details for the file sqlalchemy-filters-0.6.0.tar.gz.

File metadata

File hashes

Hashes for sqlalchemy-filters-0.6.0.tar.gz
Algorithm Hash digest
SHA256 5d90b0604da94c19e9598830bd9e87a401ffd0fd52e0691c2c3f5bfa31ff029f
MD5 e03036cd66105ce5fdcaa49e8ebda451
BLAKE2b-256 bb7a63873de6bb039aecde1909d8b98686a808243f76c84134368ef84e22b34b

See more details on using hashes here.

File details

Details for the file sqlalchemy_filters-0.6.0-py2-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_filters-0.6.0-py2-none-any.whl
Algorithm Hash digest
SHA256 adc109ca97919abf6ce884fdd181bf2df5ac9f72891a68cbbaea1b11733d43b8
MD5 02c95bd577a3faca5b3079f362398b1e
BLAKE2b-256 c86df5262c077b9e05591d949937bd336e18bc93b5b02731c4e08e8428eb1d5c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page