Skip to main content

A SQLAlchemy dialect for connecting to a [GizmoSQL](https://github.com/gizmodata/GizmoSQL) server with ADBC

Project description

SQLAlchemy GizmoSQL ADBC Dialect

sqlalchemy-gizmosql-adbc-dialect-ci Supported Python Versions PyPI version PyPI Downloads

Basic SQLAlchemy dialect for GizmoSQL

Installation

Option 1 - from PyPi

$ pip install sqlalchemy-gizmosql-adbc-dialect

Option 2 - from source - for development

git clone https://github.com/gizmodata/sqlalchemy-gizmosql-adbc-dialect

cd sqlalchemy-gizmosql-adbc-dialect

# Create the virtual environment
python3 -m venv .venv

# Activate the virtual environment
. .venv/bin/activate

# Upgrade pip, setuptools, and wheel
pip install --upgrade pip setuptools wheel

# Install SQLAlchemy GizmoSQL ADBC Dialect - in editable mode with dev dependencies
pip install --editable .[dev]

Note

For the following commands - if you are running from source and using --editable mode (for development purposes) - you will need to set the PYTHONPATH environment variable as follows:

export PYTHONPATH=$(pwd)/src

Usage

Once you've installed this package, you should be able to just use it, as SQLAlchemy does a python path search

Start a GizmoSQL Server - example below - see https://github.com/gizmodata/GizmoSQL for more details

docker run --name gizmosql \
           --detach \
           --rm \
           --tty \
           --init \
           --publish 31337:31337 \
           --env TLS_ENABLED="1" \
           --env GIZMOSQL_PASSWORD="gizmosql_password" \
           --env PRINT_QUERIES="1" \
           --pull missing \
           gizmodata/gizmosql:latest

Connect with the SQLAlchemy GizmoSQL ADBC Dialect

import os
import logging

from sqlalchemy import create_engine, MetaData, Table, select, Column, text, Integer, String, Sequence
from sqlalchemy.orm import Session
from sqlalchemy.orm import declarative_base
from sqlalchemy.engine.url import URL

# Setup logging
logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)


Base = declarative_base()


class FakeModel(Base):  # type: ignore
    __tablename__ = "fake"

    id = Column(Integer, Sequence("fakemodel_id_sequence"), primary_key=True)
    name = Column(String)


def main():
    # Build the URL
    url = URL.create(drivername="gizmosql",
                     host="localhost",
                     port=31337,
                     username=os.getenv("GIZMOSQL_USERNAME", "gizmosql_username"),
                     password=os.getenv("GIZMOSQL_PASSWORD", "gizmosql_password"),
                     query={"disableCertificateVerification": "True",
                            "useEncryption": "True"
                            }
                     )

    print(f"Database URL: {url}")

    engine = create_engine(url=url)
    Base.metadata.create_all(bind=engine)

    metadata = MetaData()
    metadata.reflect(bind=engine)

    for table_name in metadata.tables:
        print(f"Table name: {table_name}")

    with Session(bind=engine) as session:

        # Try ORM
        session.add(FakeModel(id=1, name="Joe"))
        session.commit()

        joe = session.query(FakeModel).filter(FakeModel.name == "Joe").first()

        assert joe.name == "Joe"

        # Execute some raw SQL
        results = session.execute(statement=text("SELECT * FROM fake")).fetchall()
        print(results)

        # Try a SQLAlchemy table select
        fake: Table = metadata.tables["fake"]
        stmt = select(fake.c.name)

        results = session.execute(statement=stmt).fetchall()
        print(results)


if __name__ == "__main__":
    main()

Credits

Much code and inspiration was taken from repo: https://github.com/Mause/duckdb_engine

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy_gizmosql_adbc_dialect-0.0.22.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file sqlalchemy_gizmosql_adbc_dialect-0.0.22.tar.gz.

File metadata

File hashes

Hashes for sqlalchemy_gizmosql_adbc_dialect-0.0.22.tar.gz
Algorithm Hash digest
SHA256 5c1088a0dfd2ca7ed953a37ff215360018c716c2579c2842f67c32bd0cc7889d
MD5 93b3558d654f5f4f500670fe5935ec62
BLAKE2b-256 70a7d619dbdc9379e68d05ba25bcc17f3bbf8fc18b2984fbff99ad5c9462f4d5

See more details on using hashes here.

File details

Details for the file sqlalchemy_gizmosql_adbc_dialect-0.0.22-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_gizmosql_adbc_dialect-0.0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 5393ce96e329168ea7d8ced6141885027ca546e451c5ae9b363478ad9278581f
MD5 c5fe6cd33b702041b05bf992d0c9919e
BLAKE2b-256 a84099c2334ddb6484179e33060b53c50100e9b55b7d82ef39f1eb85895afa34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page