Skip to main content

No project description provided

Project description

Sqlalchemy Hawq

build PyPi PyPI - Python Version

This is a custom dialect for using SQLAlchemy with a HAWQ database.

It extends the Postgresql dialect.

Features include:

  • Hawq options for 'CREATE TABLE' statements
  • a point class
  • a modified 'DELETE' statement for compatibility with SQLAlchemy's test suite

Unless specifically overridden, any functionality in SQLAlchemy's Postgresql dialect is also available. Note that in general, functionality that is available in Postgresql but not in Hawq has not yet been disabled.

Getting Started

Install (For developers)

clone this repository

git clone https://creisle@svn.bcgsc.ca/bitbucket/scm/dat/sqlalchemy_hawq.git
cd sqlalchemy_hawq

create a virtual environment

python3 -m venv venv
source venv/bin/activate

install the package and its development dependencies

pip install -e .[dev]

Run Tests

sqlalchemy_hawq incorporates the standard SQLAlchemy test suite as well as some tests of its own. Run them all as follows:

export HAWQ_DB_HOST=<host>
export HAWQ_DB_PORT=<port>
export HAWQ_DB_NAME=<test db>
export HAWQ_DB_DRIVER=hawq
export HAWQ_DB_USER=<your username>
export HAWQ_DB_PASS=<your password>
pytest test

Run only the standard SQLAlchemy test suite:

pytest test --hawq://username:password@hostname:port/database --sqla-only

Run only the custom sqlalchemy_hawq tests:

pytest test --hawq://username:password@hostname:port/database --custom-only

Run only the custom tests that don't require a live db connection:

pytest test --offline-only --disable-asyncio

For tests that use a live db connection, user running the tests must be able to create and drop tables on the db provided. Also, many of the tests require that there are pre-existing schemas 'test_schema' and 'test_schema_2' on the db. The test suite can be run without them but the tests will fail.

See https://github.com/zzzeek/sqlalchemy/blob/master/README.unittests.rst and https://github.com/zzzeek/sqlalchemy/blob/master/README.dialects.rst for more information on test configuration. Note that no default db url is stored in sqlalchemy_hawq's setup.cfg.

Deploy (For developers)

Create the venv and ensure the latest versions of setuptools and pip are installed:

python3 -m venv venv
source venv/bin/activate
pip install -U setuptools pip

Install sqlalchemy_hawq for deployment and create the distribution packages:

pip install .[deploy]
python3 setup.py sdist

If you want, you can now check for any problems in the distribution files:

twine check dist/*

Then:

twine upload dist/* --repository-url http://pyshop.bcgsc.ca/simple/

Using in a SQLAlchemy project

How to incorporate sqlalchemy-hawq

Add sqlalchemy_hawq to your dependencies and install.

pip install sqlalchemy_hawq

Then the plugin can be used like any other engine

from sqlalchemy import create_engine

engine = create_engine('hawq://USERNAME:PASSWORD@hdp-master02.hadoop.bcgsc.ca:5432/test_refactor/')

For instructions on how to use the SQLAlchemy engine, see https://docs.sqlalchemy.org/en/20/core/engines.html.

Hawq-specific table arguments

Hawq specific table arguments are also supported (Not all features are supported yet)

Argument Type Example Notes
hawq_distributed_by str 'column_name'
hawq_partition_by RangePartition or ListPartition ListPartition('chrom', {'chr1': '1', 'chr2':'2', 'chr3':'3'}, [RangeSubpartition('year', 2002, 2012, 1), RangeSubpartition('month', 1, 13, 1),]) Does not currently support range partitioning on dates
hawq_apppendonly bool True
hawq_orientation str 'ROW' expects one of {'ROW', 'PARQUET'}
hawq_compresstype str 'ZLIB' expects one of {'ZLIB', 'SNAPPY', 'GZIP', 'NONE'}
hawq_compresslevel int 0 expects an integer between 0-9
hawq_bucketnum int 6 expects an integer between 0 and default_hash_table_bucket_number

Example of hawq table arguments with declarative syntax

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Text

Base = declarative_base()

class ExampleTable(Base):
    __tablename__ = 'example_table'

    __table_args__ = {
        'hawq_distributed_by': 'attr1'
        'hawq_appendonly': 'True'
    }

    attr1 = Column(Integer())
    attr2 = Column(Integer())


def main():
    engine = create_engine('hawq://USERNAME:PASSWORD@hdp-master02.hadoop.bcgsc.ca:5432/test_refactor/')
    engine.create_all()

Using partitions

See https://hawq.apache.org/docs/userguide/2.3.0.0-incubating/ddl/ddl-partition.html for an extended discussion of how partitions work in Hawq.

Basically, partitioning divides a table into several smaller tables on the value of one or more columns, in order to reduce search time on those columns. The parent table can then be queried/added to without any further reference to the partitions, as Hawq handles all the parent-partition interactions.

Partition arguments are:

RangePartition(
    column_name=str,
    start=int,
    end=int,
    every=int,
    subpartitions=[])

or

ListPartition(
    column_name=str,
    columns=dict{name_of_partition:value_to_partition_on},
    subpartitions=[])

where 'subpartitions' is an array of RangeSubpartitions and/or ListSubpartitions.

Subpartition arguments are

RangeSubpartition(
    column_name=str,
    start=int,
    end=int,
    every=int)

or

ListSubpartition(
    column_name=str,
    columns=dict{name_of_partition:value_to_partition_on})

Note that the params are the same for the Subpartitions are for the Partitions, except that Subpartitions do not have a nested subpartition array.

Partition level is determined by the order of the subpartitions in the subpartition array.

Using sqlalchemy-hawq syntax to define a partition:

class MockTable(base):
    __tablename__ = 'MockTable'
    __table_args__ = {
        'hawq_partition_by': RangePartition(
            'year',
            2009,
            2012,
            1,
            [
                RangeSubpartition(
                    'quarter',
                    1,
                    5,
                    1),
                ListSubpartition(
                    'chrom',
                    {
                        'chr1': '1',
                        'chr2': '2',
                        'chr3': '3'}),
            ],
        )
    }
    id = Column('id', Integer(), primary_key=True, autoincrement=False)
    year = Column('year', Integer())
    quarter = Column('quarter', Integer())
    chrom = Column('chrom', Text())

The SQL output:

'''CREATE TABLE "MockTable" (
	id INTEGER NOT NULL,
	year INTEGER,
	quarter INTEGER,
	chrom TEXT
)
PARTITION BY RANGE (year)
    SUBPARTITION BY RANGE (quarter)
    SUBPARTITION TEMPLATE
    (
        START (1) END (5) EVERY (1),
        DEFAULT SUBPARTITION extra
    )
    SUBPARTITION BY LIST (chrom)
    SUBPARTITION TEMPLATE
    (
        SUBPARTITION chr1 VALUES ('1'),
        SUBPARTITION chr2 VALUES ('2'),
        SUBPARTITION chr3 VALUES ('3'),
        DEFAULT SUBPARTITION other
    )
(
    START (2009) END (2012) EVERY (2),
    DEFAULT PARTITION extra
)'''

The resulting tables:

test_refactor=> \dt
                            List of relations
 Schema |                     Name                      | Type  |  Owner
--------+-----------------------------------------------+-------+---------
 public | MockTable                                     | table | elewis
 public | MockTable_1_prt_2                             | table | elewis
 public | MockTable_1_prt_2_2_prt_2                     | table | elewis
 public | MockTable_1_prt_2_2_prt_2_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_2_2_prt_2_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_2_2_prt_2_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_2_2_prt_2_3_prt_other         | table | elewis
 public | MockTable_1_prt_2_2_prt_3                     | table | elewis
 public | MockTable_1_prt_2_2_prt_3_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_2_2_prt_3_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_2_2_prt_3_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_2_2_prt_3_3_prt_other         | table | elewis
 public | MockTable_1_prt_2_2_prt_4                     | table | elewis
 public | MockTable_1_prt_2_2_prt_4_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_2_2_prt_4_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_2_2_prt_4_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_2_2_prt_4_3_prt_other         | table | elewis
 public | MockTable_1_prt_2_2_prt_5                     | table | elewis
 public | MockTable_1_prt_2_2_prt_5_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_2_2_prt_5_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_2_2_prt_5_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_2_2_prt_5_3_prt_other         | table | elewis
 public | MockTable_1_prt_2_2_prt_extra                 | table | elewis
 public | MockTable_1_prt_2_2_prt_extra_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_2_2_prt_extra_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_2_2_prt_extra_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_2_2_prt_extra_3_prt_other     | table | elewis
 public | MockTable_1_prt_3                             | table | elewis
 public | MockTable_1_prt_3_2_prt_2                     | table | elewis
 public | MockTable_1_prt_3_2_prt_2_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_3_2_prt_2_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_3_2_prt_2_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_3_2_prt_2_3_prt_other         | table | elewis
 public | MockTable_1_prt_3_2_prt_3                     | table | elewis
 public | MockTable_1_prt_3_2_prt_3_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_3_2_prt_3_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_3_2_prt_3_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_3_2_prt_3_3_prt_other         | table | elewis
 public | MockTable_1_prt_3_2_prt_4                     | table | elewis
 public | MockTable_1_prt_3_2_prt_4_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_3_2_prt_4_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_3_2_prt_4_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_3_2_prt_4_3_prt_other         | table | elewis
 public | MockTable_1_prt_3_2_prt_5                     | table | elewis
 public | MockTable_1_prt_3_2_prt_5_3_prt_chr1          | table | elewis
 public | MockTable_1_prt_3_2_prt_5_3_prt_chr2          | table | elewis
 public | MockTable_1_prt_3_2_prt_5_3_prt_chr3          | table | elewis
 public | MockTable_1_prt_3_2_prt_5_3_prt_other         | table | elewis
 public | MockTable_1_prt_3_2_prt_extra                 | table | elewis
 public | MockTable_1_prt_3_2_prt_extra_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_3_2_prt_extra_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_3_2_prt_extra_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_3_2_prt_extra_3_prt_other     | table | elewis
 public | MockTable_1_prt_extra                         | table | elewis
 public | MockTable_1_prt_extra_2_prt_2                 | table | elewis
 public | MockTable_1_prt_extra_2_prt_2_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_extra_2_prt_2_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_extra_2_prt_2_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_extra_2_prt_2_3_prt_other     | table | elewis
 public | MockTable_1_prt_extra_2_prt_3                 | table | elewis
 public | MockTable_1_prt_extra_2_prt_3_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_extra_2_prt_3_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_extra_2_prt_3_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_extra_2_prt_3_3_prt_other     | table | elewis
 public | MockTable_1_prt_extra_2_prt_4                 | table | elewis
 public | MockTable_1_prt_extra_2_prt_4_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_extra_2_prt_4_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_extra_2_prt_4_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_extra_2_prt_4_3_prt_other     | table | elewis
 public | MockTable_1_prt_extra_2_prt_5                 | table | elewis
 public | MockTable_1_prt_extra_2_prt_5_3_prt_chr1      | table | elewis
 public | MockTable_1_prt_extra_2_prt_5_3_prt_chr2      | table | elewis
 public | MockTable_1_prt_extra_2_prt_5_3_prt_chr3      | table | elewis
 public | MockTable_1_prt_extra_2_prt_5_3_prt_other     | table | elewis
 public | MockTable_1_prt_extra_2_prt_extra             | table | elewis
 public | MockTable_1_prt_extra_2_prt_extra_3_prt_chr1  | table | elewis
 public | MockTable_1_prt_extra_2_prt_extra_3_prt_chr2  | table | elewis
 public | MockTable_1_prt_extra_2_prt_extra_3_prt_chr3  | table | elewis
 public | MockTable_1_prt_extra_2_prt_extra_3_prt_other | table | elewis

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy_hawq-1.0.3.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_hawq-1.0.3-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy_hawq-1.0.3.tar.gz.

File metadata

  • Download URL: sqlalchemy_hawq-1.0.3.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for sqlalchemy_hawq-1.0.3.tar.gz
Algorithm Hash digest
SHA256 970a1f31d85b638e6f86bb5256907546c500af21b10374f2e88a1faf6e5d2232
MD5 9c1881f2501c48e9a42c6285d2a9da33
BLAKE2b-256 4007f3616ebdb7216e3ce8093490f7a27df387cf048f6ef14ccf7d8aec4b3a51

See more details on using hashes here.

File details

Details for the file sqlalchemy_hawq-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_hawq-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3e4f3e9a68551612a49f20a9943d6ecde491561765cf6a7db6dcc845e0f37256
MD5 0fdc4e8e7b3ffec674d65db8ac64472c
BLAKE2b-256 3ca3659f4aa9e3e87a3774e68a212ca9060d0ec678f30dd7431edeff69e3c8a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page