Skip to main content

Querybuilder to use SqlAlchemy ORM by feeding JSON/object as input

Project description

Sqlalchemy JSON Querybuilder

It introduces a middleware between your application and Sqlalchemy ORM. So input to ORM can be provided in the form JSON/Objects.

Installation

pip install sqlalchemy-json-querybuilder

Features

  • Multiple operators' support.

  • Filter in relationship as well as in collections.

  • Pagination using windowing & slicing. Pagination can be disabled if needed.

  • Ordering/Sorting in ASC & DESC order.

  • Supports AND & OR, so multiple query criterion can be glued and bundled using AND or OR as follows -

    criteria = {
        'and': [and_criterion_dict_1, and_criterion_dict_2, ... and_criterion_dict_n],
        'or': [or_criterion_dict_1, or_criterion_dict_2, ... or_criterion_dict_n]
    }
    

    which is equivalent to -

    SELECT field_1, field_2..field_n FROM some_table WHERE
          (and_criterion_dict_1 AND and_criterion_dict_1 AND and_criterion_dict_n)
                                    AND
          (or_criterion_dict_1 OR or_criterion_dict_1 OR or_criterion_dict_1);
    

Usage

  • Filter criteria

    # Each criterion has 3 attributes: field_name, operator, field_value
    
    criterion_1 = {
        'field_name': 'MyModel1.some_field',
        'operator': 'some_operator'  # Supported operators are listed below
        'field_value': 'some_value'
    }
    
    # Once all the critera are defined in the form of dictionary/object, bundle them as follows -
    
    filter_by = {
        'and': [criterion_1, criterion_2,....criterion_n],
        'or': [other_criterion_1, other_criterion_2,....other_criterion_n]
    }
    
    # If there are `and` critera only, then they can be bundled in following 2 ways -
    filter_by = [criterion_1, criterion_2,....criterion_n] 
    
    # Alternative way to bundle `and` criteria
    filter_by = {
        'and': [criterion_1, criterion_2,....criterion_n]
    }
    
    # If there are `or` critera only, then they can be bundled as -
    filter_by = {
        'or': [criterion_1, criterion_2,....criterion_n]
    }
    
  • Ordering

    ordering = ['MyModel1.some_field', '-MyModel1.other_field']   # `-` sign indicates DESC order.
    
  • Pagination

    Following 3 attributes are used to control pagination:

    • page: Current page number.
    • per_page: Number of records to be displayed on a page.
    • all: Defaults to False, make it True in order to disable the pagination and fetch all records at once.
  • Querying

    from sqlalchemy_json_querybuilder.querybuilder.search import Search
    
    # session - SqlAlchemy session
    # 'some_module.models' - Package/module where all the models are placed.
    search_obj = Search(session, 'some_module.models', (MyModel1,), filter_by=criteria, 
                                             order_by=ordering, page=1, per_page=10, all=False)
    
    # Results contains `data` & `count`
    results = search_obj.results
    

Operators

Following operators are supported -

equals, eq, ==, =,

not_equals, ne, !=, ~=,

less_than, lt, <,

less_than_equals, lte, <=,

greater_than, gt, >,

greater_than_equals, gte, >=,

like, ilike,

startswith, istartswith, endswith, iendswith,

contains, icontains,

match,

in, notin,

isnull, isnotnull,

any, has

Note - i stands for case insensitive.

  • equals

    filter_by = [dict(field_name='User.name', field_value='ed', operator='equals')]
    

    is translated to

    query.filter(User.name == 'ed')
    
  • notequals

    filter_by = [dict(field_name='User.name', field_value='ed', operator='not_equals')]
    

    is translated to

    query.filter(User.name != 'ed')
    
  • lt

    filter_by = [dict(field_name='User.age', field_value=18, operator='lt')]
    

    is translated to

    query.filter(User.age < 18)
    
  • lte

    filter_by = [dict(field_name='User.age', field_value=18, operator='lte')]
    

    is translated to

    query.filter(User.age <= 18)
    
  • gt

    filter_by = [dict(field_name='User.age', field_value=18, operator='gt')]
    

    is translated to

    query.filter(User.age > 18)
    
  • gte

    filter_by = [dict(field_name='User.age', field_value=18, operator='gte')]
    

    is translated to

    query.filter(User.age >= 18)
    
  • in

    filter_by = [dict(field_name='User.name', field_value=['ed', 'wendy', 'jack'], operator='in')]
    

    is translated to

    query.filter(User.name.in_(['ed', 'wendy', 'jack']))
    
  • notin

    filter_by = [dict(field_name='User.name', field_value=['ed', 'wendy', 'jack'], operator='notin')]
    

    is translated to

    query.filter(~User.name.in_(['ed', 'wendy', 'jack']))
    
  • isnull

    filter_by = [dict(field_name='User.name', field_value=null, operator='isnull')]
    

    is translated to

    query.filter(User.name == None)
    
    # alternatively, if pep8/linters are a concern
    query.filter(User.name.is_(None))
    
  • isnotnull

    filter_by = [dict(field_name='User.name', field_value=null, operator='isnotnull')]
    

    is translated to

    query.filter(User.name != None)
    
    # alternatively, if pep8/linters are a concern
    query.filter(User.name.isnot(None))
    
  • contains

    filter_by = [dict(field_name='User.name', field_value='ed', operator='contains')]
    

    is translated to

    query.filter(User.name.like('%ed%'))
    
  • startswith

    filter_by = [dict(field_name='User.name', field_value='ed', operator='startswith')]
    

    is translated to

    query.filter(User.name.like('ed%'))
    
  • endswith

    filter_by = [dict(field_name='User.name', field_value='ed', operator='endswith')]
    

    is translated to

    query.filter(User.name.like('%ed'))
    
  • match

    filter_by = [dict(field_name='User.name', field_value='wendy', operator='match')]
    

    is translated to

    query.filter(User.name.match('wendy'))
    
  • any

    filter_by = [{
        'field_name': 'User.addresses',
        'operator': 'any',
        'field_value': {
            'field_name': 'Address.email_address',
            'operator': 'equals',
            'field_value': 'bar'
        }
    }]
    

    is translated to

    query.filter(User.addresses.any(Address.email_address == 'bar'))
    
    # also takes keyword arguments:
    query.filter(User.addresses.any(email_address='bar'))
    
  • has

    filter_by = [{
        'field_name': 'Address.user',
        'operator': 'has',
        'field_value': {
            'field_name': 'User.name',
            'operator': 'equals',
            'field_value': 'bar'
        }
    }]
    

    is translated to

    query.filter(Address.user.has(name='ed'))
    

Examples

Some examples are given below. More examples can be found here.

#-------------- Creating connection & session ---------------#

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker, scoped_session

Base = declarative_base()
con_url = 'mysql+pymysql://{username}:{password}@{host}:{port}/{database}'.format(
    username='root', password='', host='localhost', port=3306, database='test'
)
engine = create_engine(con_url, pool_recycle=3600)

# Set up the session
session_maker = sessionmaker(bind=engine, autoflush=True, autocommit=False, expire_on_commit=True)
session = scoped_session(session_maker)

#-------------- Models ---------------#

from uuid import uuid4
from sqlalchemy import Column, Integer, String, Text, ForeignKey
from sqlalchemy.orm import relationship

def generate_uuid():
    return str(uuid4())

class NotificationGroup(Base):
    __tablename__ = "notification_group"

    id = Column("id", String(75), primary_key=True, default=generate_uuid)
    client_id = Column('client_id', Integer, nullable=False)
    denotation = Column('denotation', String(250), nullable=False) 
    description = Column('description', String(500))
    customers_sites = Column('customers_sites', Text, nullable=False)
    group_mappings = relationship("NotificationGroupMapping", backref="notification_group_mapping", lazy='dynamic')

class NotificationGroupMapping(Base):
    __tablename__ = "notification_group_mapping"

    id = Column("id", String(75), primary_key=True, default=generate_uuid)
    notification_group_id = Column(String(75), ForeignKey('notification_group.id'))
    event_id = Column(String(75), nullable=False)
    recipient_id = Column(String(75), ForeignKey('recipient_group.id'))
    recipient = relationship("Recipient")
    is_used = Column(String(75), nullable=False)

class Recipient(Base):
    __tablename__ = 'recipients'

    client_id = Column('client_id', Integer, nullable=False)
    user_id = Column('user_id', Integer, nullable=False)
    email = Column('email', String(256), nullable=False)

#-------------- Query -------------#

from sqlalchemy_json_querybuilder.querybuilder.search import Search

# `filter_by` can have multiple criteria objects bundled as a list.
filter_by = [{
    "field_name": "NotificationGroup.group_mappings",
    "field_value": {
      "field_name": "NotificationGroupMapping.recipient",
      "field_value": {
        "field_name": "Recipient.email",
        "field_value": "Sam@gmail.com",
        "operator": "equals"
      },
      "operator": "has"
    },
    "operator": "any"
}]

# `order_by` can have multiple column names. `-` indicates arranging the results in `DESC` order.
order_by = ['-NotificationGroup.client_id']

# returns `results` dict containing `data` & `count`
results = Search(session, "models.notification_group", (NotificationGroup,), 
                filter_by=filter_by, order_by=order_by, page=1, per_page=5).results

# Above code snippet is equivalent to

results = session.query(NotificationGroup).filter(
            NotificationGroup.group_mappings.any(
                NotificationGroupMapping.recipient.has(
                    Recipient.email=='Sam@gmail.com'
                )
            )
          ).all()

Contributions

Pull requests are welcome! Please create new pull requests from dev branch.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy_json_querybuilder-1.2.3.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file sqlalchemy_json_querybuilder-1.2.3.tar.gz.

File metadata

File hashes

Hashes for sqlalchemy_json_querybuilder-1.2.3.tar.gz
Algorithm Hash digest
SHA256 770c99e8c81ee5b5d5e29b86730b928257a8b9273fb483bee9fc433129fac676
MD5 9b809334686bb7dcbe4ee1771839c408
BLAKE2b-256 1fcb8cfd38dd6f4c4bea4abbf7f92f0328fccf8c16969d9ed4275c97d10dd502

See more details on using hashes here.

File details

Details for the file sqlalchemy_json_querybuilder-1.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_json_querybuilder-1.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 40906e9793530b09ff71db94c2cd302d8e0674707712fc76baaa4f273518acc3
MD5 2a4153d25cf487c68c7d976af8f9dad8
BLAKE2b-256 464f499bd497ccc2d9ae5f704893c42df9488d014622a7b3444abcc5f93d7f42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page