Skip to main content

SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.

Project description

简体中文 | English

SQLAlchemy-Database

SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.

Pytest codecov Package version Chat on Gitter 229036692

Introduction

  • Support SQLAlchemy and SQLModel,recommend using SQLModel.

Install

pip install sqlalchemy-database

ORM Model

SQLAlchemy Model Sample

import datetime

import sqlalchemy as sa
from sqlalchemy.orm import declarative_base

Base = declarative_base()


class User(Base):
    __tablename__ = "User"
    id = sa.Column(sa.Integer, primary_key=True)
    username = sa.Column(sa.String(30), unique=True, index=True, nullable=False)
    password = sa.Column(sa.String(30), default='')
    create_time = sa.Column(sa.DateTime, default=datetime.datetime.utcnow)

SQLModel Model Sample

import datetime

from sqlmodel import SQLModel, Field


class User(SQLModel, table=True):
    id: int = Field(default=None, primary_key=True, nullable=False)
    username: str = Field(title='username', sa_column=Column(String(100), unique=True, index=True, nullable=False))
    password: str = Field(default='', title='Password')
    create_time: datetime = Field(default_factory=datetime.utcnow, title='Create Time')

AsyncDatabase

Creation Connection

from sqlalchemy_database import AsyncDatabase

# 1.Create an asynchronous database connection
db = AsyncDatabase.create('sqlite+aiosqlite:///amisadmin.db?check_same_thread=False')  # sqlite
# db = AsyncDatabase.create('mysql+aiomysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4')# mysql
# db = AsyncDatabase.create('postgresql+asyncpg://postgres:root@127.0.0.1:5432/amisadmin')# postgresql

Shortcut functions

from sqlalchemy import insert, select, update, delete


async def fast_execute():
    # update
    stmt = update(User).where(User.id == 1).values({'username': 'new_user'})
    result = await db.execute(stmt)

    # select
    stmt = select(User).where(User.id == 1)
    user = await db.execute(stmt, on_close_pre=lambda r: r.scalar())

    # insert
    stmt = insert(User).values({'username': 'User-6', 'password': 'password-6'})
    result = await db.execute(stmt)

    # delete
    stmt = delete(User).where(User.id == 6)
    result = await db.execute(stmt)

    # scalar
    user = await db.scalar(select(User).where(User.id == 1))

    # scalars_all
    stmt = select(User)
    result = await db.scalars_all(stmt)

    # get
    user = await db.get(User, 1)

    # delete
    user = User(id=1, name='test')
    await db.delete(user)

    # save(insert or update)
    user = User(name='new_user')
    await db.save(user)

    # run_sync
    await db.run_sync(Base.metadata.create_all, is_session=False)

    # session_maker
    async with db.session_maker() as session:
        user = await session.get(User, 1)

Database

Creation Connection

from sqlalchemy_database import Database

# 1.Create a database connection
db = Database.create('sqlite:///amisadmin.db?check_same_thread=False')  # sqlite
# db = Database.create('mysql+pymysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4') # mysql
# db = Database.create('postgresql://postgres:root@127.0.0.1:5432/amisadmin') # postgresql
# db = Database.create('oracle+cx_oracle://scott:tiger@tnsname') # oracle
# db = Database.create('mssql+pyodbc://scott:tiger@mydsn') # SQL Server

Shortcut functions

from sqlalchemy import insert, select, update, delete


def fast_execute():
    # update
    stmt = update(User).where(User.id == 1).values({'username': 'new_user'})
    result = db.execute(stmt)

    # select
    stmt = select(User).where(User.id == 1)
    user = db.execute(stmt, on_close_pre=lambda r: r.scalar())

    # insert
    stmt = insert(User).values({'username': 'User-6', 'password': 'password-6'})
    result = db.execute(stmt)

    # delete
    stmt = delete(User).where(User.id == 6)
    result = db.execute(stmt)

    # scalar
    user = db.scalar(select(User).where(User.id == 1))

    # scalars_all
    stmt = select(User)
    result = db.scalars_all(stmt)

    # get
    user = db.get(User, 1)

    # delete
    user = User(id=1, name='test')
    db.delete(user)

    # save(insert or update)
    user = User(name='new_user')
    db.save(user)

    # run_sync
    db.run_sync(Base.metadata.create_all, is_session=False)

    # session_maker
    with db.session_maker() as session:
        user = session.get(User, 1)

AbcAsyncDatabase

When you are developing a library of tools, your Python program may require a database connection.

But you can't be sure whether the other person personally prefers synchronous or asynchronous connections.

You can use asynchronous shortcut functions with the async_ prefix.

AsyncDatabase and Database both inherit from AbcAsyncDatabase and both implement the usual async_ prefixed asynchronous shortcut functions.

For example: async_execute,async_scalar,async_scalars_all,async_get,async_delete,async_run_sync.

Remark: The async_ prefix in Database is implemented by executing the corresponding synchronous shortcut in the thread pool.

Asynchronous compatible shortcut functions

from sqlalchemy import insert, select, update, delete
from sqlalchemy_database import AsyncDatabase, Database


async def fast_execute(db: Union[AsyncDatabase, Database]):
    # update
    stmt = update(User).where(User.id == 1).values({'username': 'new_user'})
    result = await db.async_execute(stmt)

    # select
    stmt = select(User).where(User.id == 1)
    user = await db.async_execute(stmt, on_close_pre=lambda r: r.scalar())

    # insert
    stmt = insert(User).values({'username': 'User-6', 'password': 'password-6'})
    result = await db.async_execute(stmt)

    # delete
    stmt = delete(User).where(User.id == 6)
    result = await db.async_execute(stmt)

    # scalar
    user = await db.async_scalar(select(User).where(User.id == 1))

    # scalars_all
    stmt = select(User)
    result = await db.async_scalars_all(stmt)

    # get
    user = await db.async_get(User, 1)

    # delete
    user = User(id=1, name='test')
    await db.async_delete(user)

    # save(insert or update)
    user = User(name='new_user')
    await db.async_save(user)

    # run_sync
    await db.async_run_sync(Base.metadata.create_all, is_session=False)

Use dependencies in FastAPI

app = FastAPI()


# AsyncDatabase
@app.get("/user/{id}")
async def get_user(id: int, session: AsyncSession = Depends(db.session_generator)):
    return await session.get(User, id)


# Database
@app.get("/user/{id}")
def get_user(id: int, session: Session = Depends(db.session_generator)):
    return session.get(User, id)

Use middleware in FastAPI

app = FastAPI()

# Database
sync_db = Database.create("sqlite:///amisadmin.db?check_same_thread=False")

app.add_middleware(BaseHTTPMiddleware, dispatch=sync_db.asgi_dispatch)


@app.get("/user/{id}")
def get_user(id: int):
    return sync_db.session.get(User, id)


# AsyncDatabase
async_db = AsyncDatabase.create("sqlite+aiosqlite:///amisadmin.db?check_same_thread=False")

app.add_middleware(BaseHTTPMiddleware, dispatch=async_db.asgi_dispatch)


@app.get("/user/{id}")
async def get_user(id: int):
    return await async_db.session.get(User, id)

More tutorial documentation

sqlalchemy

SQLAlchemy-Database adds extension functionality to SQLAlchemy.

More features and complicated to use, please refer to the SQLAlchemy documentation.

SQLAlchemy is very powerful and can fulfill almost any complex need you have.

sqlmodel

Recommend you to use SQLModel definition ORM model, please refer to the SQLModel documentation.

SQLModel written by FastAPI author, Perfectly combine SQLAlchemy with Pydantic, and have all their features .

Relevant project

License

According to the Apache2.0 protocol.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy_database-0.0.10.tar.gz (62.5 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_database-0.0.10-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy_database-0.0.10.tar.gz.

File metadata

  • Download URL: sqlalchemy_database-0.0.10.tar.gz
  • Upload date:
  • Size: 62.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.28.1

File hashes

Hashes for sqlalchemy_database-0.0.10.tar.gz
Algorithm Hash digest
SHA256 a325517c17654d63f8591fab4f14cbc9ad5a3f99c531688d30108e7dcb35996e
MD5 9dda8fc8ed3479adf57c4aa66ff26de2
BLAKE2b-256 12899cc2875e9af38ec4e41fc681715b2b1390f6f751e647bc8646a9b9ce84d3

See more details on using hashes here.

File details

Details for the file sqlalchemy_database-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_database-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 6d05950dc7a401a3e96448c2682610e43596d2d22c3b2a2595a9e0ef2d4289bf
MD5 8509629b12c742bda932750dd3115041
BLAKE2b-256 2dec131e1cf0ad87d2d3f59db2508eab19f09a6fb57ad9f18cf9aab72e283295

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page