SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.
Project description
SQLAlchemy-Database
SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.
Introduction
- Support
SQLAlchemy
andSQLModel
,recommend usingSQLModel
.
Install
pip install sqlalchemy-database
ORM Model
SQLAlchemy Model Sample
import datetime
import sqlalchemy as sa
from sqlalchemy.orm import declarative_base
Base = declarative_base()
class User(Base):
__tablename__ = "User"
id = sa.Column(sa.Integer, primary_key=True)
username = sa.Column(sa.String(30), unique=True, index=True, nullable=False)
password = sa.Column(sa.String(30), default='')
create_time = sa.Column(sa.DateTime, default=datetime.datetime.utcnow)
SQLModel Model Sample
import datetime
from sqlmodel import SQLModel, Field
class User(SQLModel, table=True):
id: int = Field(default=None, primary_key=True, nullable=False)
username: str = Field(title='username', max_length=30, unique=True, index=True, nullable=False)
password: str = Field(default='', title='Password')
create_time: datetime = Field(default_factory=datetime.now, title='Create Time')
AsyncDatabase
Creation Connection
from sqlalchemy_database import AsyncDatabase
# 1.Create an asynchronous database connection
db = AsyncDatabase.create('sqlite+aiosqlite:///amisadmin.db?check_same_thread=False') # sqlite
# db = AsyncDatabase.create('mysql+aiomysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4')# mysql
# db = AsyncDatabase.create('postgresql+asyncpg://postgres:root@127.0.0.1:5432/amisadmin')# postgresql
Database
Creation Connection
from sqlalchemy_database import Database
# 1.Create a database connection
db = Database.create('sqlite:///amisadmin.db?check_same_thread=False') # sqlite
# db = Database.create('mysql+pymysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4') # mysql
# db = Database.create('postgresql://postgres:root@127.0.0.1:5432/amisadmin') # postgresql
# db = Database.create('oracle+cx_oracle://scott:tiger@tnsname') # oracle
# db = Database.create('mssql+pyodbc://scott:tiger@mydsn') # SQL Server
AbcAsyncDatabase
When you are developing a library of tools, your Python program may require a database connection.
But you can't be sure whether the other person personally prefers synchronous or asynchronous connections.
You can use asynchronous shortcut functions with the async_
prefix.
AsyncDatabase
and Database
both inherit from AbcAsyncDatabase
and both implement the usual async_
prefixed asynchronous
shortcut functions.
For example: async_execute
,async_scalar
,async_scalars
,async_get
,async_delete
,async_run_sync
.
Remark: The async_
prefix in Database
is implemented by executing the corresponding synchronous shortcut in the thread pool.
Asynchronous compatible shortcut functions
from sqlalchemy import insert, select, update, delete
from sqlalchemy_database import AsyncDatabase, Database
async def fast_execute(db: Union[AsyncDatabase, Database]):
# update
stmt = update(User).where(User.id == 1).values({'username': 'new_user'})
result = await db.async_execute(stmt)
# select
stmt = select(User).where(User.id == 1)
user = await db.async_execute(stmt, on_close_pre=lambda r: r.scalar())
# insert
stmt = insert(User).values({'username': 'User-6', 'password': 'password-6'})
result = await db.async_execute(stmt)
# delete
stmt = delete(User).where(User.id == 6)
result = await db.async_execute(stmt)
# scalar
user = await db.async_scalar(select(User).where(User.id == 1))
# scalars
stmt = select(User)
result = await db.async_scalars(stmt)
# get
user = await db.async_get(User, 1)
# delete
user = User(id=1, name='test')
await db.async_delete(user)
# run_sync
await db.async_run_sync(Base.metadata.create_all, is_session=False)
Use dependencies in FastAPI
app = FastAPI()
# AsyncDatabase
@app.get("/user/{id}")
async def get_user(id: int, session: AsyncSession = Depends(db.session_generator)):
return await session.get(User, id)
# Database
@app.get("/user/{id}")
def get_user(id: int, session: Session = Depends(db.session_generator)):
return session.get(User, id)
Use middleware in FastAPI
app = FastAPI()
# Database
sync_db = Database.create("sqlite:///amisadmin.db?check_same_thread=False")
app.add_middleware(sync_db.asgi_middleware)
@app.get("/user/{id}")
def get_user(id: int):
return sync_db.session.get(User, id)
# AsyncDatabase
async_db = AsyncDatabase.create("sqlite+aiosqlite:///amisadmin.db?check_same_thread=False")
app.add_middleware(async_db.asgi_middleware)
@app.get("/user/{id}")
async def get_user(id: int):
return await async_db.session.get(User, id)
Get session object
You can get the session object anywhere, but you need to manage the lifecycle of the session yourself. For example:
-
1.In FastAPI, you can use middleware or dependencies to get the session object. In the routing function, the method called will automatically get the session object in the context.
-
2.In the local work unit, you can use the
with
statement to get the session object. In thewith
statement, the method called will automatically get a new session object.
graph LR
session[Get session] --> scopefunc{Read context var}
scopefunc -->|None| gSession[Return the global default session]
scopefunc -->|Not a Session object| sSession[Return the scoped session corresponding to the current context variable]
scopefunc -->|Is a Session object| cSession[Return session in the current context variable]
More tutorial documentation
sqlalchemy
SQLAlchemy-Database
adds extension functionality to SQLAlchemy
.
More features and complicated to use, please refer to the SQLAlchemy
documentation.
SQLAlchemy
is very powerful and can fulfill almost any complex need you have.
sqlmodel
Recommend you to use SQLModel
definition ORM
model, please refer to
the SQLModel
documentation.
SQLModel
written by FastAPI
author, Perfectly combine SQLAlchemy
with Pydantic, and have all their features .
Relevant project
License
According to the Apache2.0
protocol.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sqlalchemy_database-0.1.2.tar.gz
.
File metadata
- Download URL: sqlalchemy_database-0.1.2.tar.gz
- Upload date:
- Size: 63.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.31.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85720ed45b10e2c02fd02b82b770c735b2644cda38ddab9c0cb94348b6e8e839 |
|
MD5 | d060495ec92973be055ac6e29cd88889 |
|
BLAKE2b-256 | 1e62aefbe690d926f32563d87c7a88fbd0e11ac2840d5d6c152f1e86827ccf7f |
File details
Details for the file sqlalchemy_database-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: sqlalchemy_database-0.1.2-py3-none-any.whl
- Upload date:
- Size: 11.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.31.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9e5ff8cc607883673aedd9179c743e6550240bcca2084ff63771586cab8b3b4 |
|
MD5 | a3bfac8017e4b5ca10b823ceba3a1984 |
|
BLAKE2b-256 | 36d2a100111c6e0b36a2fb121dbd920a3312ae0559434eec8c9a796f10f89fa6 |