A tool to parse and analyze the structure for Postgres sql queries.
Project description
This is a Python package that parses a given sql query, matches the column and tables within your given metastore, and analyzes the query to generate a list of referenced columns within the metastore.
Quick Start
$ pip install sqlanalyzer
Example Usage
1. Format a query to follow the ANSI standards for SQL:
>>> from sqlanalyzer import column_parser
>>> query = """SELECT api.name, acct.customer_tier_c, acct.name FROM api_requests_by_account api
... LEFT JOIN accounts
... acct ON api.user_id = acct.customer_api_id
... """
>>> formatter = column_parser.Parser(query)
>>> formatted = formatter.format_query(query)
>>> print(formatted)
SELECT api.name,
acct.customer_tier_c,
acct.name
FROM api_requests_by_account api
LEFT JOIN accounts acct ON api.user_id = acct.customer_api_id
2. Separate CTE's and extract alias names and queries:
>>> query = """WITH a AS
... (SELECT DISTINCT anonymous_id,
... user_id
... FROM customer_data.segment_identifies
... WHERE dt >= '2018-07-01'),
... b AS
... (SELECT id,
... email,
... created
... FROM customer_data.accounts)
... SELECT a.*,
... b.*
... FROM a
... LEFT JOIN b ON a.user_id = b.id
... WHERE context_campaign_name IS NOT NULL
... """
>>> formatter = column_parser.Parser(query)
>>> cte_query = formatter.parse_cte(query)
>>> cte_query
{'a': "SELECT DISTINCT anonymous_id,\n user_id\n FROM customer_data.segment_identifies\n WHERE dt >= '2018-07-01'",
'b': 'SELECT id,\n email,\n created\n FROM customer_data.accounts',
'main_query': 'SELECT a.*,\n b.*\nFROM a\nLEFT JOIN b ON a.user_id = b.id\nWHERE context_campaign_name IS NOT NULL\n'}
>>> cte_query.keys()
dict_keys(['a', 'b', 'main_query'])
3. Match table aliases with the actual database name:
>>> query = """SELECT *
... FROM api_requests.requests_by_account m
... INNER JOIN mapbox_customer_data.styles s ON m.metadata_version = s.id
... LEFT JOIN sfdc.users u ON m.csm = u.id
... """
>>> formatter = column_parser.Parser(query)
>>> formatted = formatter.format_query(query)
>>> table_alias_mapping = formatter.get_table_names(formatted.split('\n'))
>>> table_alias_mapping
{'m': 'api_requests.requests_by_account',
's': 'mapbox_customer_data.styles',
'u': 'sfdc.users'}
4. Analyze and parse complex query with subqueries, Common Table Expressions and a mix of the two types.
a) Parse multiple and deeply (3+ levels) nested subqueries:
>>> from sqlanalyzer import query_analyzer
>>> query = """SELECT *
... FROM
... (SELECT a.*,
... b.*
... FROM
... (SELECT DISTINCT anonymous_id,
... user_id
... FROM customer_data.segment_identifies
... WHERE dt >= '2018-07-01') a
... LEFT JOIN
... (SELECT id,
... email,
... created
... FROM customer_data.accounts) b ON a.user_id = b.id
... WHERE context_campaign_name IS NOT NULL )
... """
>>> analyzer = query_analyzer.Analyzer(query)
>>> analyzer.parse_query(query)
[{'level_1_main': 'SELECT * FROM no alias '},
{'level_2_main': 'SELECT a.*, b.* WHERE context_campaign_name IS NOT NULL FROM a LEFT JOIN b ON a.user_id = b.id '},
{'a': "SELECT DISTINCT anonymous_id, user_id FROM customer_data.segment_identifies WHERE dt >= '2018-07-01'"},
{'b': 'SELECT id, email, created FROM customer_data.accounts'}]
b) Parse Common Table Expressions (CTE's):
>>> query = """WITH a AS
... (SELECT DISTINCT anonymous_id,
... user_id
... FROM customer_data.segment_identifies
... WHERE dt >= '2018-07-01'),
... b AS
... (SELECT id,
... email,
... created
... FROM customer_data.accounts)
... SELECT a.*,
... b.*
... FROM a
... LEFT JOIN b ON a.user_id = b.id
... WHERE context_campaign_name IS NOT NULL
... """
>>> analyzer = query_analyzer.Analyzer(query)
>>> analyzer.parse_query(query)
[{'a': "SELECT DISTINCT anonymous_id,\n user_id\n FROM customer_data.segment_identifies\n WHERE dt >= '2018-07-01'"},
{'b': 'SELECT id,\n email,\n created\n FROM customer_data.accounts'},
{'main_query': 'SELECT a.*,\n b.*\nFROM a\nLEFT JOIN b ON a.user_id = b.id\nWHERE context_campaign_name IS NOT NULL'}]
c) Parse mixed type of nested queries and CTE's:
>>> query = """SELECT email,
... COUNT(DISTINCT context_campaign_name)
... FROM
... (WITH a AS
... (SELECT DISTINCT anonymous_id,
... user_id
... FROM customer_data.segment_identifies
... WHERE dt >= '2018-07-01'),
... b AS
... (SELECT id,
... email,
... created
... FROM customer_data.accounts) SELECT a.*,
... b.*
... FROM a
... LEFT JOIN b ON a.user_id = b.id
... WHERE context_campaign_name IS NOT NULL )
... WHERE user_id IN ('123',
... '234',
... '345')
... GROUP BY 1
... ORDER BY 2 DESC
... LIMIT 200
... """
>>> analyzer = query_analyzer.Analyzer(query)
>>> analyzer.parse_query(query)
[{'level_1_main': "SELECT email, COUNT(DISTINCT context_campaign_name) WHERE user_id IN ('123', '234', '345') FROM no alias "},
{'no alias': [{'a': "SELECT DISTINCT anonymous_id,\n user_id\n FROM customer_data.segment_identifies\n WHERE dt >= '2018-07-01'"},
{'b': 'SELECT id,\n email,\n created\n FROM customer_data.accounts'},
{'main_query': 'SELECT a.*,\n b.*\nFROM a\nLEFT JOIN b ON a.user_id = b.id\nWHERE context_campaign_name IS NOT NULL'}]}]
Notes:
Upload instructions
python3 -m pip install --user --upgrade setuptools wheel twine
python3 setup.py sdist bdist_wheel
twine check dist/*
twine upload dist/*
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sqlanalyzer-0.4.9.tar.gz
.
File metadata
- Download URL: sqlanalyzer-0.4.9.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0fc87f6f971ba023cd7546b9d77bd65672347c6eb67dc35fe7d5a05061d8f774 |
|
MD5 | 1a2ae4355b185cf880445aea056228a6 |
|
BLAKE2b-256 | e709d49ec727827084ae35b346dc1e9216b1569512470198dad5ad452c1d01e8 |
File details
Details for the file sqlanalyzer-0.4.9-py3-none-any.whl
.
File metadata
- Download URL: sqlanalyzer-0.4.9-py3-none-any.whl
- Upload date:
- Size: 13.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9560dac63721bed4394c065c09b427b34a229548e02c57173bfca4981c04d09 |
|
MD5 | 48fb6ff31c7839c7406cf0b25582e310 |
|
BLAKE2b-256 | fc237e0e865b70e0c88ecf6baea5a6403c155649e294e213455ae35e962e04bc |