Skip to main content

An easily customizable SQL parser and transpiler

Project description

SQLGlot

SQLGlot is a no dependency Python SQL parser and transpiler. It can be used to format SQL or translate between different dialects like Presto, Spark, and Hive. It aims to read a wide variety of SQL inputs and output syntatically correct SQL in the targeted dialects.

It is currently the fastest Python SQL parser.

You can easily customize the parser to support UDF's across dialects as well through the transform API.

Syntax errors are highlighted and dialect incompatibilities can warn or raise depending on configurations.

Install

From PyPI

pip3 install sqlglot

Or with a local checkout

pip3 install -e .

Examples

Easily translate from one dialect to another. For example, date/time functions vary from dialects and can be hard to deal with.

import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read='duckdb', write='hive')
SELECT TO_UTC_TIMESTAMP(FROM_UNIXTIME(1618088028295 / 1000, 'yyyy-MM-dd HH:mm:ss'), 'UTC')

Formatting and Transpiling

Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.

Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.

import sqlglot

sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0])
WITH baz AS (
    SELECT
      `a`,
      `c`
    FROM `foo`
    WHERE
      `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS d
FROM `foo` AS f
JOIN `bar` AS b ON
  `f`.`a` = `b`.`a`
LEFT JOIN `baz` ON
  `f`.`a` = `baz`.`a`

Custom Transforms

A simple transform on types can be accomplished by providing a dict of Expression/TokenType => lambda/string

from sqlglot import *

transpile("SELECT CAST(a AS INT) FROM x", transforms={TokenType.INT: 'SPECIAL INT'})[0]
SELECT CAST(a AS SPECIAL INT) FROM x

More complicated transforms can be accomplished by using the Tokenizer, Parser, and Generator directly.

In this example, we want to parse a UDF SPECIAL_UDF and then output another version called SPECIAL_UDF_INVERSE with the arguments switched.

from sqlglot import *
from sqlglot.expressions import Func

class SpecialUDF(Func):
    arg_types = {'a': True, 'b': True}

tokens = Tokenizer().tokenize("SELECT SPECIAL_UDF(a, b) FROM x")

Here is the output of the tokenizer.

[
    <Token token_type: TokenType.SELECT, text: SELECT, line: 0, col: 0>,
    <Token token_type: TokenType.VAR, text: SPECIAL_UDF, line: 0, col: 7>,
    <Token token_type: TokenType.L_PAREN, text: (, line: 0, col: 18>,
    <Token token_type: TokenType.VAR, text: a, line: 0, col: 19>,
    <Token token_type: TokenType.COMMA, text: ,, line: 0, col: 20>,
    <Token token_type: TokenType.VAR, text: b, line: 0, col: 22>,
    <Token token_type: TokenType.R_PAREN, text: ), line: 0, col: 23>,
    <Token token_type: TokenType.FROM, text: FROM, line: 0, col: 25>,
    <Token token_type: TokenType.VAR, text: x, line: 0, col: 30>,
]

expression = Parser(functions={
    'SPECIAL_UDF': lambda args: SpecialUDF(a=args[0], b=args[1]),
}).parse(tokens)[0]

The expression tree produced by the parser.

(FROM this:
 (TABLE this: x, db: ), expression:
 (SELECT expressions:
  (COLUMN this:
   (FUNC a:
    (COLUMN this: a, db: , table: ), b:
    (COLUMN this: b, db: , table: )), db: , table: )))

Finally generating the new SQL.

Generator(transforms={
    SpecialUDF: lambda self, e: f"SPECIAL_UDF_INVERSE({self.sql(e, 'b')}, {self.sql(e, 'a')})"
}).generate(expression)
SELECT SPECIAL_UDF_INVERSE(b, a) FROM x

Parse Errors

A syntax error will result in an parse error.

transpile("SELECT foo( FROM bar")
sqlglot.errors.ParseError: Expected )
  SELECT foo( __FROM__ bar

Unsupported Errors

Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.

transpile(
    'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
    read='presto',
    write='spark',
)
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy

SELECT APPROX_COUNT_DISTINCT(a) FROM foo

Rewrite Sql

Modify sql expressions like adding a CTAS

from sqlglot import Generator, parse
from sqlglot.rewriter import Rewriter

expression = parse("SELECT * FROM y")[0]
Generator().generate(Rewriter(expression).ctas('x').expression)
CREATE TABLE x AS SELECT * FROM y

Benchmarks

Benchmarks run on Python 3.9.6 in seconds.

Query sqlglot sqlparse moz_sql_parser
short 0.00052 0.00113 0.00169
long 0.00513 0.01503 0.02137
crazy 0.01422 3.32793 0.35419

Run Tests and Lint

python -m unittest && python -m pylint sqlglot/ tests/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlglot-1.1.1.tar.gz (24.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sqlglot-1.1.1-py3-none-any.whl (24.8 kB view details)

Uploaded Python 3

File details

Details for the file sqlglot-1.1.1.tar.gz.

File metadata

  • Download URL: sqlglot-1.1.1.tar.gz
  • Upload date:
  • Size: 24.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for sqlglot-1.1.1.tar.gz
Algorithm Hash digest
SHA256 b1c2d85555eb8a9098d0bb9dd8ce2101a4a386cc8b9d67464d63a49e905ebd24
MD5 3557152a659ffb01e2528849df42b997
BLAKE2b-256 ceea6971394832821ddbd2f2e0afea69007aeb6ea4a5dd661763006ada17a041

See more details on using hashes here.

File details

Details for the file sqlglot-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: sqlglot-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 24.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for sqlglot-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 81cc94dd094856f86b623916c2b8b5c5c77211f3fab62017e3aa32beaff0a6de
MD5 f088eaf88676a5703f2b7ad418a3b08b
BLAKE2b-256 c26c16ff72e017084a0a2ea7243971e682ab6ddf07f556e8e68de7111cebf3d1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page