Skip to main content

Python functions for working with SQLite FTS4 search

Project description

sqlite-fts4

PyPI Travis CI License

Custom SQLite functions written in Python for ranking documents indexed using the FTS4 extension.

SQLite FTS5 includes a built-in ranking mechanism, but this is not available with FTS4.

Demo

You can try out these SQL functions using this interactive demo.

Usage

This module implements several custom SQLite3 functions. You can register them against an existing SQLite connection like so:

import sqlite3
from sqlite_fts4 import register_functions

conn = sqlite3.connect(":memory:")
register_functions(conn)

If you only want a subset of the functions registered you can do so like this:

from sqlite_fts4 import rank_score

conn = sqlite3.connect(":memory:")
conn.create_function("rank_score", 1, rank_score)

rank_score()

This is an extremely simple ranking function, based on an example in the SQLite documentation. It generates a score for each document using the sum of the score for each column. The score for each column is calculated as the number of search matches in that column divided by the number of search matches for every column in the index - a classic TF-IDF calculation.

You can use it in a query like this:

select *, rank_score(matchinfo(docs, "pcx")) as score
from docs where docs match "dog"
order by score desc

You must use the "pcx" matchinfo format string here, or you will get incorrect results.

rank_bm25()

An implementation of the Okapi BM25 scoring algorithm. Use it in a query like this:

select *, rank_bm25(matchinfo(docs, "pcnalx")) as score
from docs where docs match "dog"
order by score desc

You must use the "pcnalx" matchinfo format string here, or you will get incorrect results.

decode_matchinfo()

SQLite's built-in matchinfo() function returns results as a binary string. This binary represents a list of 32 bit unsigned integers, but reading the binary results is not particularly human-friendly.

The decode_matchinfo() function decodes the binary string and converts it into a JSON list of integers.

Usage:

select *, decode_matchinfo(matchinfo(docs, "pcx"))
from docs where docs match "dog"

Example output:

hello dog, [1, 1, 1, 1, 1]

annotate_matchinfo()

This function decodes the matchinfo document into a verbose JSON structure that describes exactly what each of the returned integers actually means.

Full documentation for the different format string options can be found here: https://www.sqlite.org/fts3.html#matchinfo

You need to call this function with the same format string as was passed to matchinfo() - for example:

select annotate_matchinfo(matchinfo(docs, "pcxnal"), "pcxnal")
from docs where docs match "dog"

The returned JSON will include a key for each letter in the format string. For example:

{
    "p": {
        "value": 1,
        "title": "Number of matchable phrases in the query"
    },
    "c": {
        "value": 1,
        "title": "Number of user defined columns in the FTS table"
    },
    "x": {
        "value": [
            {
                "column_index": 0,
                "phrase_index": 0,
                "hits_this_column_this_row": 1,
                "hits_this_column_all_rows": 2,
                "docs_with_hits": 2
            }
        ],
        "title": "Details for each phrase/column combination"
    },
    "n": {
        "value": 3,
        "title": "Number of rows in the FTS4 table"
    },
    "a": {
        "title":"Average number of tokens in the text values stored in each column",
        "value": [
            {
                "column_index": 0,
                "average_num_tokens": 2
            }
        ]
    },
    "l": {
        "title": "Length of value stored in current row of the FTS4 table in tokens for each column",
        "value": [
            {
                "column_index": 0,
                "length_of_value": 2
            }
        ]
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

sqlite_fts4-0.5.0-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file sqlite_fts4-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: sqlite_fts4-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.6.3

File hashes

Hashes for sqlite_fts4-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2d2dad13adcf5337d1da0c30016ca38cff32dea9aea61454eaf16f22b45e135f
MD5 3d308bae695b9cb7aa47005d4cb53652
BLAKE2b-256 908921e0894b6af6c41831048c933332124ffc58d42847b7a0ce1b20ea7f6d20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page