Skip to main content

A fork of sqlite-utils with CLI etc removed

Project description

sqlite-minutils

[!TIP]

Where to find the complete documentation for this library

If you want to learn about everything this project can do, we recommend reading the Python library section of the sqlite-utils project here.

This project wouldn’t exist without Simon Willison and his excellent sqlite-utils project. Most of this project is his code, with some minor changes made to it.

Install

pip install sqlite-minutils

Use

First, import the sqlite-miniutils library. Through the use of the all attribute in our Python modules by using import * we only bring in the Database, Queryable, Table, View classes. There’s no risk of namespace pollution.

from sqlite_minutils.db import *

Then we create a SQLite database. For the sake of convienance we’re doing it in-memory with the :memory: special string. If you wanted something more persistent, name it something not surrounded by colons, data.db is a common file name.

db = Database(":memory:")

Let’s drop (aka ‘delete’) any tables that might exist. These docs also serve as a test harness, and we want to make certain we are starting with a clean slate. This also serves as a handy sneak preview of some of the features of this library.

for t in db.tables: t.drop()

User tables are a handy way to create a useful example with some real-world meaning. To do this, we first instantiate the users table object:

users = Table(db, 'Users')
users
<Table Users (does not exist yet)>

The table doesn’t exist yet, so let’s add some columns via the Table.create method:

users.create(columns=dict(id=int, name=str, age=int))
users
<Table Users (id, name, age)>

What if we need to change the table structure?

For example User tables often include things like password field. Let’s add that now by calling create again, but this time with transform=True. We should now see that the users table now has the pwd:str field added.

users.create(columns=dict(id=int, name=str, age=int, pwd=str), transform=True, pk='id')
users
<Table Users (id, name, age, pwd)>
print(db.schema)
CREATE TABLE "Users" (
   [id] INTEGER PRIMARY KEY,
   [name] TEXT,
   [age] INTEGER,
   [pwd] TEXT
);

Queries

Let’s add some users to query:

users.insert(dict(name='Raven', age=8, pwd='s3cret'))
users.insert(dict(name='Magpie', age=5, pwd='supersecret'))
users.insert(dict(name='Crow', age=12, pwd='verysecret'))
users.insert(dict(name='Pigeon', age=3, pwd='keptsecret'))
users.insert(dict(name='Eagle', age=7, pwd='s3cr3t'))
<Table Users (id, name, age, pwd)>

A simple unfiltered select can be executed using rows property on the table object.

users.rows
<generator object Queryable.rows_where at 0x10849f6f0>

Let’s iterate over that generator to see the results:

[o for o in users.rows]
[{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
 {'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
 {'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'},
 {'id': 4, 'name': 'Pigeon', 'age': 3, 'pwd': 'keptsecret'},
 {'id': 5, 'name': 'Eagle', 'age': 7, 'pwd': 's3cr3t'}]

Filtering can be done via the rows_where function:

[o for o in users.rows_where('age > 3')]
[{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
 {'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
 {'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'},
 {'id': 5, 'name': 'Eagle', 'age': 7, 'pwd': 's3cr3t'}]

We can also limit the results:

[o for o in users.rows_where('age > 3', limit=2)]
[{'id': 1, 'name': 'Raven', 'age': 8, 'pwd': 's3cret'},
 {'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'}]

The offset keyword can be combined with the limit keyword.

[o for o in users.rows_where('age > 3', limit=2, offset=1)]
[{'id': 2, 'name': 'Magpie', 'age': 5, 'pwd': 'supersecret'},
 {'id': 3, 'name': 'Crow', 'age': 12, 'pwd': 'verysecret'}]

The offset must be used with limit or raise a ValueError:

try:
    [o for o in users.rows_where(offset=1)]
except ValueError as e:
    print(e)
Cannot use offset without limit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlite-minutils-3.37.0.post3.tar.gz (47.1 kB view details)

Uploaded Source

Built Distribution

sqlite_minutils-3.37.0.post3-py3-none-any.whl (45.6 kB view details)

Uploaded Python 3

File details

Details for the file sqlite-minutils-3.37.0.post3.tar.gz.

File metadata

File hashes

Hashes for sqlite-minutils-3.37.0.post3.tar.gz
Algorithm Hash digest
SHA256 d7f8db1581ef4e8e6d507ad8998f3c0ad574c507e36715818017108c0814a1e6
MD5 cd618c7f886bf7b57ac89e9bf6b106c7
BLAKE2b-256 ff07929e483980cfba5d895972436b851383b657e2a130e3e81ae6e74f9ea920

See more details on using hashes here.

File details

Details for the file sqlite_minutils-3.37.0.post3-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlite_minutils-3.37.0.post3-py3-none-any.whl
Algorithm Hash digest
SHA256 1990e1d44263914abcb23d8c87163925739b43110923d2263e383cabbb271cc3
MD5 de26f024df996c36002474691d7e866f
BLAKE2b-256 f8d6e0eb58ad5157950bed7cd673c28a66d46ecebb202892bb9c14c66e1e4714

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page