Skip to main content

SQL Lineage Analysis Tool powered by Python

Project description

SQLLineage

SQL Lineage Analysis Tool powered by Python

image image image image Build Status Documentation Status codecov Code style: black security: bandit

Never get the hang of a SQL parser? SQLLineage comes to the rescue. Given a SQL command, SQLLineage will tell you its source and target tables, without worrying about Tokens, Keyword, Identifier and all the jagons used by SQL parsers.

Behind the scene, SQLLineage pluggable leverages parser library (sqlfluff and sqlparse) to parse the SQL command, analyze the AST, stores the lineage information in a graph (using graph library networkx), and brings you all the human-readable result with ease.

Demo & Documentation

Talk is cheap, show me a demo.

Documentation is online hosted by readthedocs, and you can check the release note there.

Quick Start

Install sqllineage via PyPI:

$ pip install sqllineage

Using sqllineage command to parse a quoted-query-string:

$ sqllineage -e "insert into db1.table1 select * from db2.table2"
Statements(#): 1
Source Tables:
    db2.table2
Target Tables:
    db1.table1

Or you can parse a SQL file with -f option:

$ sqllineage -f foo.sql
Statements(#): 1
Source Tables:
    db1.table_foo
    db1.table_bar
Target Tables:
    db2.table_baz

Advanced Usage

Multiple SQL Statements

Lineage is combined from multiple SQL statements, with intermediate tables identified:

$ sqllineage -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1

Verbose Lineage Result

And if you want to see lineage for each SQL statement, just toggle verbose option

$ sqllineage -v -e "insert into db1.table1 select * from db2.table2; insert into db3.table3 select * from db1.table1;"
Statement #1: insert into db1.table1 select * from db2.table2;
    table read: [Table: db2.table2]
    table write: [Table: db1.table1]
    table cte: []
    table rename: []
    table drop: []
Statement #2: insert into db3.table3 select * from db1.table1;
    table read: [Table: db1.table1]
    table write: [Table: db3.table3]
    table cte: []
    table rename: []
    table drop: []
==========
Summary:
Statements(#): 2
Source Tables:
    db2.table2
Target Tables:
    db3.table3
Intermediate Tables:
    db1.table1

Dialect-Awareness Lineage

By default, sqllineage use ansi dialect to parse and validate your SQL. However, some SQL syntax you take for granted in daily life might not be in ANSI standard. In addition, different SQL dialects have different set of SQL keywords, further weakening sqllineage's capabilities when keyword used as table name or column name. To get the most out of sqllineage, we strongly encourage you to pass the dialect to assist the lineage analyzing.

Take below example, INSERT OVERWRITE statement is only supported by big data solutions like Hive/SparkSQL, and MAP is a reserved keyword in Hive thus can not be used as table name while it is not for SparkSQL. Both ansi and hive dialect tell you this causes syntax error and sparksql gives the correct result:

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo"
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=hive
...
sqllineage.exceptions.InvalidSyntaxException: This SQL statement is unparsable, please check potential syntax error for SQL

$ sqllineage -e "INSERT OVERWRITE TABLE map SELECT * FROM foo" --dialect=sparksql
Statements(#): 1
Source Tables:
    <default>.foo
Target Tables:
    <default>.map

Use sqllineage --dialects to see all available dialects.

Column-Level Lineage

We also support column level lineage in command line interface, set level option to column, all column lineage path will be printed.

INSERT INTO foo
SELECT a.col1,
       b.col1     AS col2,
       c.col3_sum AS col3,
       col4,
       d.*
FROM bar a
         JOIN baz b
              ON a.id = b.bar_id
         LEFT JOIN (SELECT bar_id, sum(col3) AS col3_sum
                    FROM qux
                    GROUP BY bar_id) c
                   ON a.id = sq.bar_id
         CROSS JOIN quux d;

INSERT INTO corge
SELECT a.col1,
       a.col2 + b.col2 AS col2
FROM foo a
         LEFT JOIN grault b
              ON a.col1 = b.col1;

Suppose this sql is stored in a file called test.sql

$ sqllineage -f test.sql -l column
<default>.corge.col1 <- <default>.foo.col1 <- <default>.bar.col1
<default>.corge.col2 <- <default>.foo.col2 <- <default>.baz.col1
<default>.corge.col2 <- <default>.grault.col2
<default>.foo.* <- <default>.quux.*
<default>.foo.col3 <- c.col3_sum <- <default>.qux.col3
<default>.foo.col4 <- col4

MetaData-Awareness Lineage

By observing the column lineage generated from previous step, you'll possibly notice that:

  1. <default>.foo.* <- <default>.quux.*: the wildcard is not expanded.
  2. <default>.foo.col4 <- col4: col4 is not assigned with source table.

It's not perfect because we don't know the columns encoded in * of table quux. Likewise, given the context, col4 could be coming from bar, baz or quux. Without metadata, this is the best sqllineage can do.

User can optionally provide the metadata information to sqllineage to improve the lineage result.

Suppose all the tables are created in sqlite database with a file called db.db. In particular, table quux has columns col5 and col6 and baz has column col4.

sqlite3 db.db 'CREATE TABLE IF NOT EXISTS baz (bar_id int, col1 int, col4 int)';
sqlite3 db.db 'CREATE TABLE IF NOT EXISTS quux (quux_id int, col5 int, col6 int)';

Now given the same SQL, column lineage is fully resolved.

$ SQLLINEAGE_DEFAULT_SCHEMA=main sqllineage -f test.sql -l column --sqlalchemy_url=sqlite:///db.db
main.corge.col1 <- main.foo.col1 <- main.bar.col1
main.corge.col2 <- main.foo.col2 <- main.bar.col1
main.corge.col2 <- main.grault.col2
main.foo.col3 <- c.col3_sum <- main.qux.col3
main.foo.col4 <- main.baz.col4
main.foo.col5 <- main.quux.col5
main.foo.col6 <- main.quux.col6

The default schema name in sqlite is called main, we have to specify here because the tables in SQL file are unqualified.

SQLLineage leverages sqlalchemy to retrieve metadata from different SQL databases. Check for more details on SQLLineage MetaData.

Lineage Visualization

One more cool feature, if you want a graph visualization for the lineage result, toggle graph-visualization option

Still using the above SQL file

sqllineage -g -f foo.sql

A webserver will be started, showing DAG representation of the lineage result in browser:

  • Table-Level Lineage
Table-Level Lineage
  • Column-Level Lineage
Column-Level Lineage

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqllineage-1.5.3.tar.gz (4.5 MB view details)

Uploaded Source

Built Distribution

sqllineage-1.5.3-py3-none-any.whl (4.3 MB view details)

Uploaded Python 3

File details

Details for the file sqllineage-1.5.3.tar.gz.

File metadata

  • Download URL: sqllineage-1.5.3.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for sqllineage-1.5.3.tar.gz
Algorithm Hash digest
SHA256 0a9abd4f5902c9159ac2088eb56c7cec6feda903a933fe4de8cf6aeb4ad445fb
MD5 3e1ae9f6eed5f715ca4fad1fda6a33da
BLAKE2b-256 7896b8c588a16739d688247029dfc8ffdf299aff654e948a5b905c2204cf7d8a

See more details on using hashes here.

File details

Details for the file sqllineage-1.5.3-py3-none-any.whl.

File metadata

  • Download URL: sqllineage-1.5.3-py3-none-any.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for sqllineage-1.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 44c983d61bca80856a53657a7617f710f50134a39353a27c196c02623b52a42f
MD5 fca26433ff6c02b551b2101a052cbcc4
BLAKE2b-256 729c3ed1b82ec259aa881e24092c24298c08c734c0d93a9c79c84362f833f5db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page