Skip to main content

SQL Phile

Project description

Introduce

SQLPhile is a SQL template engine and Python style SQL generator. It looks like Django ORM but it hasn’t any relationship with Django or ORM.

But it is inspired by Django ORM and iBATIS SQL Maps.

SQLPhile might be useful for keeping clean look of your app script. It can make hide SQL statements for your script by using Python functions or/and writing SQL templates to seperated files.

For Example,

conn = psycopg2.connect (...)
cursor = conn.cursor ()

cursor.execute ("""
  SELECT type, org, count(*) cnt FROM rc_file
  WHERE org = {} AND filename LIKE '%{}'
  GROUP BY {}
  ORDER BY {}
  LIMIT {}
  OFFSET {}
""".format (1, 'OCD', 'type', 'org, cnt DESC', 10, 10))

This codes can be written with SQLPhile:

sp = SQLPhile ()

conn = psycopg2.connect (...)
cursor = conn.cursor ()

q = sp.ops.select ("rc_file", "type", "count(*) cnt")
q.filter (org = 1, name__endswith = 'OCD')
q.group_by ("type").order_by ("org", "-cnt")[10:20]
cursor.execute (q.as_sql ())

Or you can use SQL template file: sqlmaps/file.sql:

<sql name="get_stat">
  SELECT type, org, count(*) cnt FROM rc_file
  WHERE {_filters}
              {_group_by} {_order_by} {_limit} {_offset}
</sql>

Your app code is,

sp = SQLPhile ("sqlmaps")

conn = psycopg2.connect (...)
cursor = conn.cursor ()

q = sp.file.get_stat.filter (org = 1, name__endswith = 'OCD')
      q.group_by ("type").order_by ("org", "-cnt")[10:20]
cursor.execute (q.as_sql ())

SQLPhile

SQLPhile is main class of this package.

from sqlphile import SQLPhile

sp = SQLPhile (dir = None, auto_reload = False, engine = "postgresql")

Once SQLPhile is created, you can reuse it through entire your app.

Simple Query

SQLPhile provide ops object for generic SQL operation.

q = sp.ops.insert (table = "rc_file")
q.data (_id = 1, score = 1.3242, name = "file-A", moddate = datetime.date.today ())
cursor.execute (q.as_sql ())

q = sp.ops.update ("rc_file")
q.data (name = "Jenny", modified = datetime.date.today ())
q.filter (...)

q = sp.ops.select ("rc_file")
q.columns ("id", "name", "create", "modified")
q.filter (...)

q = sp.ops.delete ("rc_file")
q.filter (...)

Also shortcuts are avaliable,

q = sp.ops.insert ("rc_file", _id = 1, score = 1.3242, name = "file-A", moddate = datetime.date.today ())
cursor.execute (q.as_sql ())

q = sp.ops.update ("rc_file", name = "Jenny", modified = datetime.date.today ())
q.filter (...)

q = sp.ops.select ("rc_file", "id", "name", "create", "modified")
q.filter (...)

q = sp.ops.delete ("rc_file")
q.filter (...)

Templating For Complex and Highly Customized Query

If you create SQL templates in specific directory,

from sqlphile import SQLPhile

sp = SQLPhile (dir = "./sqlmaps", auto_reload = True)

SQLPhile will load all of your templates in ./sqlmaps.

If you are under developing phase, set auto_reload True.

Assume there is a template file named ‘file.sql’:

<sqlmap version="1.0">

<sql name="get_stat">
  SELECT type, org, count(*) cnt FROM rc_file
  WHERE {_filters}
  GROUP BY type
  ORDER BY org, cnt DESC
  {_limit} {_offset}
</sql>

It looks like XML file, BUT IT’S NOT. All tags - <sqlmap>, <sql></sql> should be started at first of line. But SQL of inside is at your own mind but I recommend give some indentation.

Now you can access each sql temnplate via filename without extension and query name attribute:

# filename.query name
q = sp.file.get_stat
q.filter (...).order_by (...)

# or
q = sp.file.get_stat.filter (...).order_by (...)

Note: filename is default.sql, you can ommit filename.

q = sp.get_stat
q.filter (...).order_by (...)

Note 2: SHOULD NOt use “ops.*” as filename.

Filtering & Excluding

filter function is very simailar with Djnago ORM.

q = sp.get_stat

q.filter (__all = True)
>> 1 = 1

q.filter (id__all = True)
>> 1 = 1

q.filter (id = 1)
>> id = 1

q.filter (id__exact = 1)
>> id = 1

q.filter (id__eq = 1)
>> id = 1

q.exclude (id = 1)
>> NOT (id = 1)

q.filter (id__neq = 1)
>> id <> 1

q.filter (id__gte = 1)
>> id >= 1

q.filter (id__lt = 1)
>> id < 1

q.filter (id__between = (10, 20))
>> id BETWEEN 10 AND 20

q.filter (name__contains = "fire")
>> name LIKE '%fire%'

q.exclude (name__contains = "fire")
>> NOT name LIKE '%fire%'

q.filter (name__startswith = "fire")
>> name LIKE 'fire%'

# escaping %
q.filter (name__startswith = "fire%20ice")
>> name LIKE 'fire\%20ice%'

q.filter (name__endswith = "fire")
>> name LIKE '%fire'

q.filter (name = None)
>> name IS NULL

q.exclude (name = None)
>> NOT name IS NULL

q.filter (name__isnull = True)
>> name IS NULL

q.filter (name__isnull = False)
>> name IS NOT NULL

Also you can add multiple filters:

q.filter (name__isnull = False, id = 4)
>> name IS NOT NULL AND id = 4

All filters will be joined with “AND” operator.

Q Object

How can add OR operator?

from sqlphile import Q

q.filter (Q (id = 4) | Q (email__contains = "org"), name__isnull = False)
>> name IS NOT NULL AND (id = 4 OR email LIKE '%org%')

Note that Q objects are first, keywords arguments late. Also you can add seperatly.

q.filter (name__isnull = False)
q.filter (Q (id = 4) | Q (email__contains = "org"))
>> (id = 4 OR email LIKE '%org%') AND name IS NOT NULL

If making excluding filter with Q use tilde(~),

q.filter (Q (id = 4) | ~Q (email__contains = "org"))
>> (id = 4 OR NOT email LIKE '%org%')

F Object

All value will be escaped or automatically add single quotes, but for comparing with other fileds use F.

from sqlphile import F

Q (email = F ("b.email"))
>> email = b.email

Q (email__contains = F ("org"))
>> email LIKE '%' || org || '%'

F can be be used for ops.

q = sp.ops.update (tbl, n_view = F ("n_view + 1"))
q.filter (...)
cursor.execute (q.as_sql ())

Ordering & Grouping

For ordering,

q = sp.ops.select (tbl, "id", "name", "create", "modified")
q.filter (...)
q.order_by ("id", "-modified")
>> ORDER BY id, modified DESC

For grouping,

q = sp.ops.select (tbl, "name", "count(*) cnt")
q.filter (...)
q.group_by ("name")
>> GROUP BY name

q.having ("count(*) > 10")
>> GROUP BY name HAVING count(*) > 10

Offset & Limit

For limiting record set,

q = sp.ops.select (tbl, "id", "name", "create", "modified")
q [:100]
>> LIMIT 100

q [10:30]
>> LIMIT 20 OFFSET 10

Be careful for slicing and limit count.

Returning

For Returning columns after insertinig or updating data,

q = sp.ops.insert (tbl, name = "Hans", created = datetime.date.today ())
q.returning ("id", "name")
>> RETURNING id, name

Using Template

Template is like this,

<sqlmap version="1.0">

<sql name="get_stat">
  SELECT type, org, count(*) cnt FROM rc_file
  WHERE {_filters}
  GROUP BY type
  ORDER BY org, cnt DESC
  {_limit} {offset}
</sql>

<sql name="get_file">
  SELECT * cnt FROM rc_file
  WHERE {_filters}
  {_order_by}
  {_limit}
  {_offset}
</sql>

You just fill variables your query reqiures,

q = sp.file.get_file.filter (id__gte = 1000)[:20]
q.order_by ("-id")

Current reserved variables are,

  • _filters

  • _group_by

  • _order_by

  • _limit

  • _offset

  • _having

  • _returning

  • _columns: comma joined column list fed by data ()

  • _values: comma joined value list fed by data ()

  • _pairs: comma joined column=value list fed by data ()

Variablize Your Query

You can add variable on your sql.

<sql name="get_file">
  SELECT {cols} cnt FROM {tbl}
  WHERE {_filters}
</sql>

Now feed keywords args with feed ():

q = sp.file.get_file.filter (id__gte = 1000)
q.feed (cols = "id, name, created", tbl = "rc_file")

Also you can feed values with similar way,

<sql name="get_file">
  INSERT INTO {tbl} (name, create, birth_year)
  VALUES ({name}, {created}, {birth_year})
</sql>
q = sp.file.get_file
q.feed (tbl = "rc_file")
q.data (name = "Hans Roh", created = datetime.date.today (), birth_year = 2000)

What differences with feed? data () will escape values for fitting SQL. You needn’t care about sing quotes, escaping or type casting on date time field.

Actually, feed () can be omitable,

# like instance constructor
q = sp.file.get_file (tbl = "rc_file")
q.data (name = "Hans Roh", created = datetime.date.today (), birth_year = 2000)

What differences with feed? data () will escape values for fitting SQL. You needn’t care about sing quotes, escaping or type casting on date time field.

D Object

Sometimes, data() method is insufficient. D object convert dictionary into SQL column and value format and can feed them into SQL template.

from sqlphile import D

d = D (name = "Hans", id = 1, email = None)
d.values
>> 'Hans', 1, NULL

d.columns
>> name, id, email

d.pairs
>> name = 'Hans', id = 1, email = NULL

And you can feed to template.

<sql name="get_file">
  INSERT ({_columns}, {additional_columns})
  VALUES ({_valuess}, {additional_values})
  {_returning};
</sql>

In app,

q = sp.file.get_file.data (area = "730", additional = D (name = 'Hans', id = 1))
q.returning ("id")
cursor.execute (q.as_sql ())

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlphile-0.1.3.6.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

sqlphile-0.1.3.6-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file sqlphile-0.1.3.6.tar.gz.

File metadata

  • Download URL: sqlphile-0.1.3.6.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for sqlphile-0.1.3.6.tar.gz
Algorithm Hash digest
SHA256 8635c40786234aa1b95417dbfc1c178a188a33658087986b42a23f0cc5db2796
MD5 ddc9d9dc6928db82df4660a74ec1cfd3
BLAKE2b-256 cbf3266fb524368bdc8a194253749e7685f0bb91ccf99c47ce81aad95cc4ea12

See more details on using hashes here.

File details

Details for the file sqlphile-0.1.3.6-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlphile-0.1.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 26850618859e5087064f86a627dd615340e3713b28009730e7ed23645cc8b2cf
MD5 b66bbf5bf585d2fcdc80b9b0e1841e42
BLAKE2b-256 2adf4ecbd308997f0f0b044d4922ae27cca1175392df8608b71f030008496414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page