Skip to main content

A thread safe queue worker that executes SQL for multi-threaded applications.

Project description

Sqlite3 Execution Queue

version license pyversions
donate powered made

A thread safe queue worker that executes SQL for multi-threaded applications.

Hierarchy

sqlqueue
'---- SqlQueue()
    |---- sql()
    |---- _sql()
    |---- commit()
    '---- stop()

Example

python

from sqlq import *

# specify the db file, relative or absolute path
# set server=True
sqlqueue = SqlQueue(server=True, db="db.db")

# SQL execution modes
# all will return the executed SQL result immediately
SqlQueue(server=True, db="default", timeout_commit=1000).sql("SELECT * FROM table;")
SqlQueue(server=True, db="commit per 1ms", timeout_commit=1).sql("INSERT INTO table VALUES (?);", (0,))
SqlQueue(server=True, db=r"C:\somewhere\db.db").sql("INSERT INTO table VALUES (?);", ((0,),(0,)))
SqlQueue(server=True, db="../../data/db.db").sql('''
CREATE TABLE "tablea" ("a" TEXT);
DELETE TABLE "table";
''')

# stop the worker
# use it at your own risk
# otherwise data will be lost
# always commit before stopping it
sqlqueue.commit()
sqlqueue.stop()

# using sqlq with encryptedsocket
# server
from encryptedsocket import SS
from easyrsa import *
sqlqueueserver = SqlQueue(server=True, db=r"db.db")
threading.Thread(target=SS(EasyRSA(bits=1024).gen_key_pair(), sqlqueueserver.functions).start).start()
# client
sqlqueue = SqlQueue()
for i in range(10):
    # SqlQueue._sql() must not be used in socket mode
    sqlqueue.sql("INSERT INTO test VALUES (?);", (str(i)))
# server
sqlqueueserver.commit()
sqlqueueserver.stop()

# SQL execution speed
# # server mode _sql() without built-in ThreadWrapper() handler
# SqlQueue(server=True, ...)._sql() <
# # server mode sql() with built-in ThreadWrapper() handler
# SqlQueue(server=True, ...).sql() <
# # client mode sql() with two nested ThreadWrapper() handlers
# SqlQueue().sql()

# this example shows how sqlq is used
# SQL should not be executed frequently
r = (1, 5, 10, 50, 100, 200)
r = (50,)
for l in r:
    tw = ThreadWrapper(threading.Semaphore(l))
    starttime = time.time()
    result = {}  # result pool
    for i in range(l):
        def job(i):
            # return SQL execution result to result pool
            return sqlqueue._sql(threading.get_ident(), "INSERT INTO test VALUES (?);", (str(i),))
        tw.add(job, args=args(i), result=result, key=i)  # pass the pool and uid in
    tw.wait()
    # p(result)
    p(l, (time.time()-starttime)/l, time.time()-starttime)
    p(sqlqueue.sql("SELECT * FROM test;"))
    tw = ThreadWrapper(threading.Semaphore(l))
    starttime = time.time()
    for i in range(l):
        def job(i):
            sqlqueue._sql(threading.get_ident(), f"DELETE FROM test WHERE a = ?;", (str(i),))
        tw.add(job, args=args(i))
    tw.wait()
    p(l, (time.time()-starttime)/l, time.time()-starttime)
    # in order to use SqlQueue()._sql(), ThreadWrapper() is
    # recommended to queue threads, check threadwrapper for more info
    # SqlQueue()._sql() will raise execution error
    # it will only report it to the result
    # you should handle the errors separately


    starttime = time.time()
    for i in range(l):
        sqlqueue.sql("INSERT INTO test VALUES (?);", (str(i),))
    p(l, (time.time()-starttime)/l, time.time()-starttime)
    p(sqlqueue.sql("SELECT * FROM test;"))
    starttime = time.time()
    for i in range(l):
        sqlqueue.sql(f"DELETE FROM test WHERE a = ?;", (str(i),))
    p(l, (time.time()-starttime)/l, time.time()-starttime)
    p()
    sqlqueue.commit()  # manual commit
    # both manual and timeout commit always wait until
    # the current SQL execution is completed. 
    # the worker will not raise any error
    # however SqlQueue().sql() will re-raise execution error

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlq-0.6.4.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

sqlq-0.6.4-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file sqlq-0.6.4.tar.gz.

File metadata

  • Download URL: sqlq-0.6.4.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.0

File hashes

Hashes for sqlq-0.6.4.tar.gz
Algorithm Hash digest
SHA256 5af9f72b1177029bd72e8a00d91c915091d0f990dd440448cc99ef84ee3b08a7
MD5 a31f9d709445eb7bfb3409d6dde1b82d
BLAKE2b-256 a71dc67907ed73e4c0b55ddc41e42eee22316b422c065c933c3ae4f887ce57b0

See more details on using hashes here.

File details

Details for the file sqlq-0.6.4-py3-none-any.whl.

File metadata

  • Download URL: sqlq-0.6.4-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.0

File hashes

Hashes for sqlq-0.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 85c35f447175d555a80f046356fb71b1d6619c434e5eeadf1be89d47476e8fd9
MD5 9d8dd1eca53a18ef69aa87a6c6299877
BLAKE2b-256 ac1d85ad49c75e5ae8901606a27614cc3ab1fd6ee9aaa7f3eee88f656288d3ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page