SQL-based experiment tracking
Project description
SQLTrack
SQLTrack is a set of tools to track your (machine learning) experiments. While using other tools like Sacred or mlflow tracking, we found that they limited how we could track our experiments and later what analyses we could perform. What we realized is that it is ultimately futile for library authors to guess how experiment data will be used. If it was possible for a library to cater to every single use case it would then become too bloated to use.
That is why our goal is to collect a wide variety of examples for analyses and visualizations to empower our users, instead of providing complex functionality in our package.
To that end, SQLTrack only provides a basic schema of experiments, runs, and metrics that you can extend to suit your needs, as well as some basic tools to set up the database and store experiment data.
Getting started
Currently SQLTrack supports PostgreSQL through the psycopg driver. We don't plan on adding support any other databases, except SQLite if there is demand for it. We've tried using ORMs, but found that they made things way more complicated than they needed to be and - most importantly - they obfuscated the DB schema from users. Ideally we would use standard SQL and let users bring their own database Python DB-API 2.0 compatible driver, but that would mean we lose access to advanced features like indexable JSONB columns.
Installation
SQLTrack can be installed like any other Python package,
e.g., pip install sqltrack
.
By default only core dependencies are installed,
which speeds up usage in containerized environments.
Core functionality located in the toplevel package
sqltrack
allows tracking experiments and working
with the database.
To use some of the convenience functions for anaylsis later,
install the full package with pip install sqltrack[full]
.
On Linux, your distribution repositories should include a version of PostgreSQL you can use. We develop against 13, but any currently supported version should work. There are also install instructions for MacOS and Windows.
Base schema
This is the basic schema SQLTrack defines (minus some details like indexes),
with tables experiments
, experiment_relationships
, runs
,
run_relationships
, and metrics
.
runs.status
has the custom enum type runstatus
.
It behaves like text when used with the psycopg driver.
Possible values have been lifted from Slurm job status.
BEGIN;
CREATE TABLE experiments (
id BIGINT GENERATED BY DEFAULT AS IDENTITY,
time_created TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
name TEXT NOT NULL,
comment TEXT,
tags JSONB,
PRIMARY KEY (id),
UNIQUE(name)
);
CREATE TABLE experiment_relationships (
from_id BIGINT NOT NULL,
kind TEXT NOT NULL,
to_id BIGINT NOT NULL,
PRIMARY KEY(from_id, kind, to_id),
FOREIGN KEY(from_id) REFERENCES experiments(id),
FOREIGN KEY(to_id) REFERENCES experiments(id)
);
CREATE TYPE runstatus AS ENUM (
'BOOT_FAIL',
'CANCELLED',
'CONFIGURING',
'COMPLETED',
'COMPLETING',
'DEADLINE',
'FAILED',
'NODE_FAIL',
'OUT_OF_MEMORY',
'PENDING',
'PREEMPTED',
'RESV_DEL_HOLD',
'REQUEUE_FED',
'REQUEUE_HOLD',
'REQUEUED',
'RESIZING',
'REVOKED',
'RUNNING',
'SIGNALING',
'SPECIAL_EXIT',
'STAGE_OUT',
'STOPPED',
'SUSPENDED',
'TIMEOUT'
);
CREATE TABLE runs (
id BIGINT GENERATED BY DEFAULT AS IDENTITY,
experiment_id BIGINT NOT NULL,
status runstatus NOT NULL DEFAULT 'PENDING',
time_created TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT CURRENT_TIMESTAMP,
time_started TIMESTAMP WITH TIME ZONE,
time_updated TIMESTAMP WITH TIME ZONE,
comment TEXT,
tags JSONB,
args JSONB,
env JSONB,
PRIMARY KEY(id),
FOREIGN KEY(experiment_id) REFERENCES experiments(id) ON DELETE CASCADE
);
CREATE TABLE run_relationships (
from_id BIGINT NOT NULL,
kind TEXT NOT NULL,
to_id BIGINT NOT NULL,
PRIMARY KEY(from_id, kind, to_id),
FOREIGN KEY(from_id) REFERENCES runs(id) ON DELETE CASCADE,
FOREIGN KEY(to_id) REFERENCES runs(id) ON DELETE CASCADE
);
CREATE TABLE metrics (
run_id INTEGER NOT NULL,
step BIGINT NOT NULL DEFAULT 0,
progress DOUBLE PRECISION NULL DEFAULT 0.0,
PRIMARY KEY (run_id, step, progress),
FOREIGN KEY(run_id) REFERENCES runs(id) ON DELETE CASCADE
);
END;
Note that the metrics
table doesn't contain any columns to store metrics yet.
Users need to add these as required.
E.g., a script to add columns for timing, loss, and accuracy in
train, validation, and test phases could look like this:
BEGIN;
ALTER TABLE metrics
ADD COLUMN train_start TIMESTAMP WITH TIME ZONE,
ADD COLUMN train_end TIMESTAMP WITH TIME ZONE,
ADD COLUMN train_loss FLOAT,
ADD COLUMN train_top1 FLOAT,
ADD COLUMN train_top5 FLOAT,
ADD COLUMN val_start TIMESTAMP WITH TIME ZONE,
ADD COLUMN val_end TIMESTAMP WITH TIME ZONE,
ADD COLUMN val_loss FLOAT,
ADD COLUMN val_top1 FLOAT,
ADD COLUMN val_top5 FLOAT,
ADD COLUMN test_start TIMESTAMP WITH TIME ZONE,
ADD COLUMN test_end TIMESTAMP WITH TIME ZONE,
ADD COLUMN test_loss FLOAT,
ADD COLUMN test_top1 FLOAT,
ADD COLUMN test_top5 FLOAT;
END;
Now you might ask why we make you add columns for your metrics,
because that might seem annoying and wasteful compared
to a normalized name+value approach like what mlflow
uses.
But don't worry, because PostgreSQL is smart.
Any NULL values aren't actually stored.
It only stores values that are not NULL and uses a bitmap
to keep track of them.
Also, each row has a fixed size header of ~23 bytes and mlflow
uses one row per metric value.
Since we store many metric values in a row we can afford
really large bitmaps to track those NULL values before we
come out worse.
Put your instructions to add metrics columns etc. in a SQL
script file, e.g. v001.sql
, for use later.
Add v002.sql
etc. to update your schema.
Setup the database
SQLTrack provides a simple tool to setup your database.
usage: sqltrack [-h] [-u USER] [-a HOST] [-d DATABASE] [-s SCHEMA] [-c CONFIG_PATH] {setup} ...
positional arguments:
{setup} Available commands.
setup Setup and migrate the database.
options:
-h, --help show this help message and exit
-u USER, --user USER username
-a HOST, --host HOST DB host (and port)
-d DATABASE, --database DATABASE
database name
-s SCHEMA, --schema SCHEMA
schema name
-c CONFIG_PATH, --config-path CONFIG_PATH
path to config file
User, host, database, and schema as parameters given on the command line take priority,
but you can also define environment variables SQLTRACK_DSN_<PARAM>
to set them.
More info on available parameters can be found
here.
Finally, most convenient is probably to store them in a config file.
The default path is ./sqltrack.conf
user=<USER>
host=<HOST>
database=<DATABASE>
schema=<SCHEMA>
Those SQL script files you created earlier?
This is where you use them.
Run the setup command with them, e.g. sqltrack setup v001.sql
.
This creates the base schema and updates it with your definitions.
Track an experiment
from random import random
import sqltrack
def main():
client = sqltrack.Client()
experiment = sqltrack.Experiment(client, name="Very science, much data")
run = experiment.get_run()
with run.track():
for epoch in range(90):
metrics = {"train_loss": random(), "train_top1": random()}
run.add_metrics(step=epoch, progress=epoch/epochs, **metrics)
Analyzing results
This is where it's up to you. We recommend Jupyter Lab to interact with the database, but plain Jupyter or alternatives like Plotly Dash work well too. Look at the examples directory in our repository to get some ideas. But really, you're the experimenter, you know best what to do with your data.
[Optional] Self-signed SSL certificate
You can create a SSL self-signed certificate to use with HTTPS:
openssl req -x509 -newkey rsa:4096 -keyout jupyter.key -out jupyter.crt -sha256 -days 365 -nodes
Start Jupyter Lab with your certificate:
jupyter-lab [options...] --certfile jupyter.crt --keyfile jupyter.key
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sqltrack-0.1.3.tar.gz
.
File metadata
- Download URL: sqltrack-0.1.3.tar.gz
- Upload date:
- Size: 27.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d455f4ac0a20b0cfd4a76d0fda04c141061c8347189ea392fcba6a3729b64e67 |
|
MD5 | ccc621bf559805ecb7840c2d96bcf1bc |
|
BLAKE2b-256 | 399fc862f7f12be7d153b478488fcfea92946d552b2dfa306424ac0bf091be67 |
File details
Details for the file sqltrack-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: sqltrack-0.1.3-py3-none-any.whl
- Upload date:
- Size: 27.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2bf9787e8bec9162cb820ad0a276f209ebc600e7e431c4d4c932180125c52a5 |
|
MD5 | e7ef201da840d2ad7c31304070765aa0 |
|
BLAKE2b-256 | 5f5031528daf6f58260398aaebf6f89251e3293ccb762b2ff649d051e2550675 |