Skip to main content

Squirrel public datasets collection

Project description

Squirrel Datasets Core

Python PyPI Conda Documentation Status Downloads License DOI Generic badge Slack


What is Squirrel Datasets Core?

squirrel-datasets-core is an extension of the Squirrel library. squirrel-datasets-core is a hub where the user can

  1. explore existing public datasets registered in the data mesh and load them with the ease and speed of squirrel
  2. preprocess their datasets and share them with other users.

For preprocessing, we currently support Spark as the main tool to carry out the task.

If you have any questions or would like to contribute, join our Slack community!

Installation

Install squirrel-core and squirrel-datasets-core with pip. Note that you can install with different dependencies based on your requirements for squirrel drivers. For using the Torchvision driver call:

pip install "squirrel-core[torch]"
pip install "squirrel-datasets-core[torchvision]"

For using the Huggingface or Deeplake driver call:

pip install "squirrel-datasets-core[huggingface]"
pip install "squirrel-datasets-core[deeplake]"

For using the Spark preprocessing pipelines call:

pip install "squirrel-datasets-core[preprocessing]"

If you would like to get Squirrel's full functionality, install squirrel-core and squirrel-datasets-core with all their dependencies.

pip install "squirrel-core[all]"
pip install "squirrel-datasets-core[all]"

Huggingface, Deeplake, Hub and Torchvision Integration

A great feature of squirrel-datasets-core is that you can easily load data from common databases such as Huggingface, Activeloop Deeplake, Hub and Torchvision with one line of code. And you get to enjoy all of Squirrel’s benefits for free! Check out the documentation on how to interface with these libraries.

from squirrel_datasets_core.driver.huggingface import HuggingfaceDriver

it = HuggingfaceDriver("cifar100").get_iter("train").filter(custom_filter).map(custom_augmentation)

# your train loop
for item in it:
  out = model(item)
  # ...

Documentation

Visit our documentation on Readthedocs.

Contributing

squirrel-datasets-core is open source and community contributions are welcome!

Check out the contribution guide to learn how to get involved. Please follow our recommendations for best practices and code style.

The Humans behind Squirrel

We are Merantix Momentum, a team of ~30 machine learning engineers, developing machine learning solutions for industry and research. Each project comes with its own challenges, data types and learnings, but one issue we always faced was scalable data loading, transforming and sharing. We were looking for a solution that would allow us to load the data in a fast and cost-efficient way, while keeping the flexibility to work with any possible dataset and integrate with any API. That's why we build Squirrel – and we hope you'll find it as useful as we do! By the way, we are hiring!

Citation

If you use Squirrel Datasets in your research, please cite Squirrel using:

@article{2022squirrelcore,
  title={Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way.},
  author={Squirrel Developer Team},
  journal={GitHub. Note: https://github.com/merantix-momentum/squirrel-core},
  year={2022}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

squirrel_datasets_core-0.2.0.dev60845.tar.gz (41.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file squirrel_datasets_core-0.2.0.dev60845.tar.gz.

File metadata

File hashes

Hashes for squirrel_datasets_core-0.2.0.dev60845.tar.gz
Algorithm Hash digest
SHA256 b7442d36e7545cadbebb3377febc01762740b231adafb4fc1cfa9f5673ab2d89
MD5 5d192e5057af4fbe857c81c93070eaae
BLAKE2b-256 b7a73136de62da298b7bc2e96f37adfa961781f3b6144fcaab2a0a0c72503489

See more details on using hashes here.

File details

Details for the file squirrel_datasets_core-0.2.0.dev60845-py3-none-any.whl.

File metadata

File hashes

Hashes for squirrel_datasets_core-0.2.0.dev60845-py3-none-any.whl
Algorithm Hash digest
SHA256 99cebfe4d0da3eca29f294b251f0d97aa7b33be16a5adbe4c3957b28a89b4b35
MD5 9af0f234e759fba78b08f7b26d9b4842
BLAKE2b-256 9722369ebc49c7c944467d07700ea18286c6d7f08d7eb419ef830d0077e3b31f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page