Skip to main content

Squirrel public datasets collection

Project description

Squirrel Datasets Core

Python PyPI Conda Documentation Status Downloads License DOI Generic badge Slack


What is Squirrel Datasets Core?

squirrel-datasets-core is an extension of the Squirrel library. squirrel-datasets-core is a hub where the user can

  1. explore existing public datasets registered in the data mesh and load them with the ease and speed of squirrel
  2. preprocess their datasets and share them with other users.

For preprocessing, we currently support Spark as the main tool to carry out the task.

If you have any questions or would like to contribute, join our Slack community!

Installation

Install squirrel-core and squirrel-datasets-core with pip. Note that you can install with different dependencies based on your requirements for squirrel drivers. For using the Torchvision driver call:

pip install "squirrel-core[torch]"
pip install "squirrel-datasets-core[torchvision]"

For using the Huggingface or Deeplake driver call:

pip install "squirrel-datasets-core[huggingface]"
pip install "squirrel-datasets-core[deeplake]"

For using the Spark preprocessing pipelines call:

pip install "squirrel-datasets-core[preprocessing]"

If you would like to get Squirrel's full functionality, install squirrel-core and squirrel-datasets-core with all their dependencies.

pip install "squirrel-core[all]"
pip install "squirrel-datasets-core[all]"

Huggingface, Deeplake, Hub and Torchvision Integration

A great feature of squirrel-datasets-core is that you can easily load data from common databases such as Huggingface, Activeloop Deeplake, Hub and Torchvision with one line of code. And you get to enjoy all of Squirrel’s benefits for free! Check out the documentation on how to interface with these libraries.

from squirrel_datasets_core.driver.huggingface import HuggingfaceDriver

it = HuggingfaceDriver("cifar100").get_iter("train").filter(custom_filter).map(custom_augmentation)

# your train loop
for item in it:
  out = model(item)
  # ...

Documentation

Visit our documentation on Readthedocs.

Contributing

squirrel-datasets-core is open source and community contributions are welcome!

Check out the contribution guide to learn how to get involved. Please follow our recommendations for best practices and code style.

The Humans behind Squirrel

We are Merantix Momentum, a team of ~30 machine learning engineers, developing machine learning solutions for industry and research. Each project comes with its own challenges, data types and learnings, but one issue we always faced was scalable data loading, transforming and sharing. We were looking for a solution that would allow us to load the data in a fast and cost-efficient way, while keeping the flexibility to work with any possible dataset and integrate with any API. That's why we build Squirrel – and we hope you'll find it as useful as we do! By the way, we are hiring!

Citation

If you use Squirrel Datasets in your research, please cite Squirrel using:

@article{2022squirrelcore,
  title={Squirrel: A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way.},
  author={Squirrel Developer Team},
  journal={GitHub. Note: https://github.com/merantix-momentum/squirrel-core},
  year={2022}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

squirrel_datasets_core-0.2.0.dev9312.tar.gz (45.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file squirrel_datasets_core-0.2.0.dev9312.tar.gz.

File metadata

File hashes

Hashes for squirrel_datasets_core-0.2.0.dev9312.tar.gz
Algorithm Hash digest
SHA256 0b75a7c80fb985e713b9a17f0dcf1bf1340b055068d34c052564c6200a0821a0
MD5 410cdd88335450c43ff9ee438efcd08b
BLAKE2b-256 bc8988a61846b12e4f5b783d7bc0beb0a53e32072bf4a6af023e64d60b8985ac

See more details on using hashes here.

File details

Details for the file squirrel_datasets_core-0.2.0.dev9312-py3-none-any.whl.

File metadata

File hashes

Hashes for squirrel_datasets_core-0.2.0.dev9312-py3-none-any.whl
Algorithm Hash digest
SHA256 1a0956040494b2c0e335baf1045523dce3c0117e7c7f08f79c43d73a9ca66385
MD5 b9c4bb7c4e132996a58637d5b84dcc26
BLAKE2b-256 977d0bb9565156ef8cef4d4becc0cfdf522829bf454ba823a86e0f4b5bf1d5c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page