Skip to main content

No project description provided

Project description

This repository contains functions to store knowledge for the bot, to use the knowledge stored by the bot to evaluate some statistics.

Pre-Usage

pipenv install --dev

Usage - Create Bot Knowledge

  1. You can extract knowledge from a project using the following command:

GITHUB_ACCESS_TOKEN=<github_acess_token> PYTHONPATH=. pipenv run srcopsmetrics/cli.py --project <project_name> -c True

Usage - Visualize Project Statistics

PYTHONPATH=. pipenv run srcopsmetrics/cli.py --project <project_name> -v True

Examples

For each project is possible to obtain the following plots:

MTTR-in-time-<name-project>.png –> Mean time to Review (MTTR) variation after each PR approved in time.

MTTR-in-time-<name-project>-authors.png –> Mean time to Review (MTTR) variation after each PR approved for each author in time.

thoth-station-<name-project>.png –> Time to Review (TTR) variation after each PR approved.

thoth-station-<name-project>-authors.png –> Time to Review (TTR) variation after each PR approved per reviwer.

Usage - Reviewer Reccomender

PYTHONPATH=. pipenv run srcopsmetrics/cli.py --project <project_name> -r True

If there are bots in the list of contributors of your project you can add them to the list at the beginning of the file. In this way you can receive the percentage of the work done by humans vs bots.

BOTS_NAMES = [
    "sesheta",
    "dependencies[bot]",
    "dependabot[bot]",
    ]

number_reviewer flag is set to 2

Final Score for Reviewers assignment

The final score for the selection of the reviewers, it is based on the following contributions. (Number of reviewers is by default 2, but it can be changed)

  1. Number of PR reviewed respect to total number of PR reviewed by the team.

  2. Mean time to review a PR by reviewer respect to team repostiory MTTR.

  3. Mean length of PR respect to minimum value of PR length for a specific label.

  4. Number of commits respect to the total number of commits in the repository.

5. Time since last review compared to time from the first review of the project respect to the present time. (Time dependent contribution)

Each of the contribution as a weight factor k. If all weight factors are set to 1, all contributions to the final score have the same weight.

Example results

Repository  PullRequest n.  Commits n.  PullRequestRev n.           MTTFR     MTTR

thoth-station/performance 33 38 20 0:17:30.500000 0:46:28 INFO:reviewer_recommender:——————————————————————————-

Contrib PR n. PR % PRRev n. PRRev % MPRLen Rev n. MRL MTTFR MTTR TLR Comm n. Comm % Bot fridex 17 0.515152 13 0.65 S 21 3.0 0:02:44 0:31:10 40 days 00:08:36.857380 19 0.5 False pacospace 16 0.484848 7 0.35 M 9 1.0 1:01:46 1:01:46 40 days 05:00:39.857380 19 0.5 False

Contrib C1 C2 C3 C4 C5 Score pacospace 0.484848 0.752294 1.00000 0.5 1 0.337028 fridex 0.515152 1.490909 0.22449 0.5 1 0.159314

INFO:reviewer_recommender:Number of reviewers requested: 2 INFO:reviewer_recommender:Reviewers: [‘pacospace’ ‘fridex’]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

srcopsmetrics-0.2.2.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

srcopsmetrics-0.2.2-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file srcopsmetrics-0.2.2.tar.gz.

File metadata

  • Download URL: srcopsmetrics-0.2.2.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/36.5.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for srcopsmetrics-0.2.2.tar.gz
Algorithm Hash digest
SHA256 c8d7d1121530dd9bd518cd6e457043bbd672a64e0e91e9601967b2e8a8d4fa72
MD5 99e36030a7a7b2b4347426d40e466543
BLAKE2b-256 e8081d87d296b715d7f60a154661ea0adb28df30808494dfd68c6895030b9dde

See more details on using hashes here.

File details

Details for the file srcopsmetrics-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: srcopsmetrics-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/36.5.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.3

File hashes

Hashes for srcopsmetrics-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b8e4d74272f2fb36e179611d25d91baff0eadc201eed883d1c9023eacb665514
MD5 203f6911f67a1c12871324c844a12c1f
BLAKE2b-256 62e99fac28d9d20127371b3d77383bb3873f203f98a7b8edf1644a3d8637c10b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page