Skip to main content

Parsing of IVOA S_REGION strings

Project description

python package

sregion

Parsing of IVOA S_REGION strings

The STS-C formalism is described at http://www.ivoa.net/Documents/latest/STC-S.html, though it seems that it was never adopted as an official standard. Nevertheless, the s_region strings do seem to have been adopted as a sort of pseudostandard in IVOA-compliant datasets / databases.

astropy-regions would probably be a better place to put this, but I'm not interested in all of the full astropy coordinate compatibility for now.

Examples

>>> import numpy as np
>>> from sregion import SRegion

#
# Polygon string
#
>>> sr = SRegion('POLYGON 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0')
>>> print(sr.area)
[1.0]
>>> print(sr.centroid)
[array([0.5, 0.5])]

#
# Circle string
#
>>> for i in range(4,10):
>>>     sr = SRegion('CIRCLE 10 10 1', ncircle=2**i)
>>>     print(f'ncircle={2**i:>3} {sr.area[0]/np.pi:.5f} {sr.centroid[0]}')
ncircle= 16 0.97450 [10. 10.]
ncircle= 32 0.99359 [10. 10.]
ncircle= 64 0.99839 [10. 10.]
ncircle=128 0.99960 [10. 10.]
ncircle=256 0.99990 [10. 10.]
ncircle=512 0.99997 [10. 10.]

# Circle with radius in angular units
>>> import astropy.units as u
>>> sr = SRegion('CIRCLE 10 10 1"', ncircle=256)
>>> print(f'{sr.sky_area(unit=u.arcsec**2)[0]:.5f}')
3.14128 arcsec2

#
# From WCS objects
#
>>> from astropy.wcs import WCS
>>> wcs = WCS()
>>> wcs.pixel_shape = [601,601]
>>> wcs.wcs.cdelt *= 0.1/3600
>>> wcs.wcs.crpix[1] = 300
>>> wcs.wcs.crval = [0,0]
>>> print(SRegion(wcs).sky_area())
[<Quantity 1. arcmin2>]

#
# From arrays
#
>>> x = np.array([0, 0, 1, 1])
>>> y = np.array([0, 1, 1, 0])
>>> sr = SRegion(np.array([x, y]).T)
>>> print(sr.area)
[1.0]
>>> print(sr.centroid)
[array([0.5, 0.5])]

# 
# To s_region string
#
>>> print(sr.s_region)
POLYGON 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000

#
# To matplotlib path object(s)
#
>>> print(sr.path[0].contains_point([0.5, 0.5]))
True
>>> print(sr.path[0].contains_points([[0.5, 0.5], [2.0, 2.0]]))
[ True False]

#
# To matplotlib patch(es)
#
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1,1,figsize=(2,2))
>>> for p in sr.patch(alpha=0.5, fc='r'):
>>>     ax.add_patch(p)
>>> ax.set_xlim(-1, 2)
>>> ax.set_ylim(*ax.get_xlim())
>>> ax.grid()

#
# To shapely polygons
# 
>>> sr.shapely
[<shapely.geometry.polygon.Polygon at 0x18055b910>]

#
# To DS9 region(s)
#
>>> for r in sr.region:
>>>    print(r)
polygon(0.000000,0.000000,0.000000,1.000000,1.000000,1.000000,1.000000,0.000000)

>>> sr.ds9_properties = 'color=red width=2'
>>> sr.label = 'my_group'
>>> for r in sr.region:
>>>    print(r)
polygon(0.000000,0.000000,0.000000,1.000000,1.000000,1.000000,1.000000,0.000000) # color=red width=2 text={my_group}

    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sregion-1.2.2.tar.gz (11.6 kB view details)

Uploaded Source

File details

Details for the file sregion-1.2.2.tar.gz.

File metadata

  • Download URL: sregion-1.2.2.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for sregion-1.2.2.tar.gz
Algorithm Hash digest
SHA256 f2ac803c75a299517ae640eea8662c044dbb2aebfa58f99e055defe071978171
MD5 770780a8befb6611befe5c2aa8b215f6
BLAKE2b-256 fe92f7c1d31c469ad8328ebc2b88a0ad907f06bc69482120d5eff780fcf7c590

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page