Skip to main content

EimerDB

Project description

EimerDB

PyPI Status Python Version License

Documentation Tests Coverage Quality Gate Status

pre-commit Black Ruff Poetry

About

EimerDB is a python package that gives database-like functionality to parquet files stored in google cloud storage. It achieves this by organising the parquet files in a certain way, reads and combines them with pyarrow and then query the combined pyarrow tables with duckdb. For use as a part of the statistical production process at Statistics Norway.

Features

Create and connect to a database

Create a new database by specifying the bucket name and a database name.

import eimerdb as db

db.create_eimerdb(bucket_name="bucket-name", db_name="prodcombasen")

Connect to your EimerDB database.

prodcombasen = db.EimerDBInstance("bucket-name", "prodcombasen")

Table Management

You can create a new table with the create_table method. Specify the table name, the schema, the partition columns and set if the table is editable or not. Define the columns in the schema, with a column name, type and a label.

schema = [
    {
        "name": "aar",
        "type": "int16",
        "label": "Årgangen."
    },
    {
        "name": "ident",
        "type": "string",
        "label": "Foretakets identifikator."
    },
    {
        "name": "skjemaversjon",
        "type": "string",
        "label": "Skjemaets versjon."
    },
    {
        "name": "råvarekode",
        "type": "string",
        "label": "Prefillet råvarekode. Disse kodene lages av NR."
    },
    {
        "name": "beskrivelse",
        "type": "string",
        "label": "Prefillet råvarebeskrivelse. Disse beskrivelsene lages av NR."
    },
    {
        "name": "forbruk",
        "type": "int64",
        "label": "Oppgitt forbruk (i 1 000 NOK) til den tilhørende råvarekoden."
    },
]

prodcombasen.create_table(
    table_name="prefill_prod",
    schema,
    partition_columns=["aar"],
    editable=True
)

Partitioning the table by one or more columns will help improve query performance

SQL Query Support

Query your tables with SQL syntax. You can optionally specify the partition to be queried.

prodcombasen.query(
    """SELECT *
    FROM prodcom_prefill
    WHERE produktkode = '10.13.11.20'""",
    partition_select = {
        "aar": [2022, 2021]
        }

Updates

Perform updates using SQL statements Each update is saved as a separate parquet file for versioning. The update files includes a username column and a datetime column for when the update happened.

prodcombasen.query(
    """UPDATE prodcom_prefill
    SET mengde = 123
    WHERE ident = '123456'
    AND produktkode = '10.13.11.20'""",
    partition_select = partitions
)

Easily access the unedited version of a table

Retrieve the unedited version of your data by specifying unedited=True.

prodcombasen.query(
    """SELECT *
    FROM prodcom_prefill""",
    unedited=True
)

Query the changes made to a table

You can query alle the changes made to the table with the query_changes method.

prodcombasen.query_changes(
    """SELECT *
    FROM prodcom_prefill""",
    unedited=True
)

Query multiple tables

Query multiple tables using JOIN and subquery.

prodcombasen.query(
    f"""SELECT
            t1.aar,
            t1.produktkode,
            t1.beskrivelse,
            SUM(t1.mengde) AS mengde
        FROM
            prefill_prod AS t1
        JOIN (
            SELECT
                t2.aar,
                t2.ident,
                t2.skjemaversjon,
                MAX(t2.dato_mottatt) AS newest_dato_mottatt
            FROM
                skjemainfo AS t2
            GROUP BY
                t2.aar,
                t2.ident,
                t2.skjemaversjon
        ) AS subquery ON
            t1.aar = subquery.aar
            AND t1.ident = subquery.ident
            AND t1.skjemaversjon = subquery.skjemaversjon
        WHERE
            t1.mengde IS NOT NULL
        GROUP BY
            t1.aar,
            t1.produktkode,
            t1.beskrivelse;""",
        partition_select={
            "aar": [2022, 2021, 2020]
        },
    )

User Management (in development)

Add and remove users from your instance. Assign specific roles to users for access control.

prodcombasen.add_user(username="newuser", role="admin")
prodcombasen.remove_user(username="olduser")

Requirements

  • TODO

Installation

You can install EimerDB via pip from PyPI:

pip install ssb-eimerdb

Usage

Please see the Reference Guide for details.

Contributing

Contributions are very welcome. To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license, EimerDB is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from Statistics Norway's SSB PyPI Template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssb_eimerdb-0.2.2.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

ssb_eimerdb-0.2.2-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file ssb_eimerdb-0.2.2.tar.gz.

File metadata

  • Download URL: ssb_eimerdb-0.2.2.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.7

File hashes

Hashes for ssb_eimerdb-0.2.2.tar.gz
Algorithm Hash digest
SHA256 bf652448dd58a5e047249fc423652cfaf871a45cb4ed966e72fb83b0e4afccee
MD5 49ef78efdac1bfd271d6511b4c9b3e76
BLAKE2b-256 ca38226d6ac604ccc0f9513e4e24a82696629b7af83810462ad647050933b270

See more details on using hashes here.

File details

Details for the file ssb_eimerdb-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: ssb_eimerdb-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 20.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.7

File hashes

Hashes for ssb_eimerdb-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bba988da07539cad4baf76002a3443417d3cf6cfc6d0456d314c38adcb661cba
MD5 5ba7f21778ffa1098494e013f9eca0a3
BLAKE2b-256 146b554ef559456421be2ce8ee5bc43466ca23a448e4e08156ddd16fd92d8a63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page