Skip to main content

SSFP simulation

Project description

SSFP

Simple steady-state free precession simulation. The goal is to provide a simple to use, pip-installable solution for simulating and working with this wonderful pulse sequence.

In this package:

  • bSSFP: bssfp()

  • FIMTRE: fimtre()

  • GRE: gre()

  • GS solution: gs_recon()

  • PLANET: planet()

  • 3D Region Growing Phase Correction: rgphcorr3d()

  • Robust Coil Combination: robustcc()

Installation

Should be as easy as:

python -m pip install ssfp

Usage

See ssfp.examples for typical usage. You can run examples like:

python -m ssfp.examples.basic_bssfp

Balanced steady-state free precession can be called through bssfp(). This is an implementation of equations [1–2] in [1]. These equations are based on the Ernst-Anderson derivation [2] where off-resonance is assumed to be subtracted as opposed to added (as in the Freeman-Hill derivation [3]). Hoff actually gets Mx and My flipped in the paper, so we fix that here. We also assume that the field map will be provided given the Freeman-Hill convention.

from ssfp import bssfp

# Here's the simplest usage, see docstring for all the possible
# function arguments
sig = bssfp(T1, T2, TR, alpha)

We can also easily get the Geometric Solution to the elliptical signal model as described in [1] as follows:

from ssfp import gs_recon
recon = gs_recon(phased_cycled_images, pc_axis=-1)

# Notice that we can specify the axis where the phase-cycles live

PLANET [4] is a method for simultaneous T1, T2 fitting for bSSFP phase-cycled data. Call like this:

from ssfp import planet

# For a single pixel:
Meff, T1, T2, df = planet(
    phased_cycled_pixels, alpha, TR, T1_guess,
    pcs=np.deg2rad([0, 90, 180, 270, etc...]))

3D Region Growing Phase Correction [5] is an algorithm for determining water and fat images from a single bSSFP acquisition. It can be called like this:

from ssfp import rgphcorr3d
phase_corrected = rgphcorr3d(
    dataset3d, cellsize=(4, 4, 4), slice_axis=-1)

# see ssfp.examples.basic_rgphcorr for full usage example

Robust Coil Combination for bSSFP Elliptical Signal Model [6] is a coil combination method that preserves the elliptical relationships between phase-cycled pixels. It has two variants: simple and full. By default, the simple method is called. The full method is very slow and only used for validation of the simple method. Robust coil combination can be called like this:

from ssfp import robustcc

sx, sy, sz, num_pc, num_coils = data.shape[:]
coil_combined = robustcc(data, pc_axis=-2, coil_axis=-1)

# see ssfp.examples.basic_robustcc for more usage examples

Changelog

  • 1.2.0: setup.py -> pyproject.toml; GPL -> MIT licence; general maintenance; dependency version bumps; type annotations; divide-by-zero fixes

  • 1.0.0: bssfp() function overhaul to allow arbitrarily dimensioned input arrays or scalars and removes the target_pc_axis argument.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssfp-1.2.0.tar.gz (33.5 kB view details)

Uploaded Source

Built Distribution

ssfp-1.2.0-py2.py3-none-any.whl (41.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ssfp-1.2.0.tar.gz.

File metadata

  • Download URL: ssfp-1.2.0.tar.gz
  • Upload date:
  • Size: 33.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for ssfp-1.2.0.tar.gz
Algorithm Hash digest
SHA256 77c26f280de44a54800616360150a783055f037b19f1b3fe09fb3738d7657062
MD5 e27f77bfbd4e1f85e6f43aa11c071893
BLAKE2b-256 164c2febcb7134cb90220fd33643405494961abcf4661104f0bae4971ed4ca8f

See more details on using hashes here.

File details

Details for the file ssfp-1.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: ssfp-1.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 41.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for ssfp-1.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 18dadb3979c708bbefaef08cb62b2da63b1925cf22bcdf3c3849b0b58cfc18db
MD5 353cf67a96c65bafa92faee15af7173e
BLAKE2b-256 d80009f985bf843c6332c48b426a889a9de48de5998925c0505d6d6166d2ea46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page