Skip to main content

Simple Shape Inference tool for ONNX.

Project description

ssi4onnx

Simple Shape Inference tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U ssi4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ ssi4onnx -h

usage:
    ssi4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit.

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from ssi4onnx import shape_inference
>>> help(shape_inference)

Help on function shape_inference in module ssi4onnx.onnx_shape_inference:

shape_inference(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    estimated_graph: onnx.ModelProto
        Shape estimated onnx ModelProto.

4. CLI Execution

$ ssi4onnx --input_onnx_file_path nanodet_320x320.onnx

5. In-script Execution

from ssi4onnx import shape_inference

estimated_graph = shape_inference(
    input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
)

6. Sample

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssi4onnx-1.0.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

ssi4onnx-1.0.0-py3-none-any.whl (5.4 kB view details)

Uploaded Python 3

File details

Details for the file ssi4onnx-1.0.0.tar.gz.

File metadata

  • Download URL: ssi4onnx-1.0.0.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for ssi4onnx-1.0.0.tar.gz
Algorithm Hash digest
SHA256 d981ecb6dd750e0b021ed359100aeae9b13990e6612b03b89184ecf3841b5abe
MD5 7301da6cd9478bf0a9352db43b258494
BLAKE2b-256 d9b8b5c1694662f458768b0b2f5ae2cd998b8c62691d28cb342c5774c6528868

See more details on using hashes here.

File details

Details for the file ssi4onnx-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: ssi4onnx-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 5.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for ssi4onnx-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f47444a83946c972c7f32cfaa203afb84674e58a3e2b3bef347cccfab681d46b
MD5 ea6919cc75a6a47a196d678265a8a287
BLAKE2b-256 1de8a3295dad53ba04ef751892f8073a2ee81bced321214e0f83b8a8b535a468

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page