Skip to main content

Simple Shape Inference tool for ONNX.

Project description

ssi4onnx

Simple Shape Inference tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U ssi4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ ssi4onnx -h

usage:
    ssi4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit.

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from ssi4onnx import shape_inference
>>> help(shape_inference)

Help on function shape_inference in module ssi4onnx.onnx_shape_inference:

shape_inference(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    estimated_graph: onnx.ModelProto
        Shape estimated onnx ModelProto.

4. CLI Execution

$ ssi4onnx --input_onnx_file_path nanodet_320x320.onnx

5. In-script Execution

from ssi4onnx import shape_inference

estimated_graph = shape_inference(
    input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
)

6. Sample

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssi4onnx-1.0.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

ssi4onnx-1.0.1-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file ssi4onnx-1.0.1.tar.gz.

File metadata

  • Download URL: ssi4onnx-1.0.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for ssi4onnx-1.0.1.tar.gz
Algorithm Hash digest
SHA256 4a4ad552bd11c8624f538f56e1bd7fee56c024ebd957569b70f74268dc5fccdd
MD5 f99dff6e9d71502dbd1b4f56012a3688
BLAKE2b-256 dd40e5b78007493ddfa7bebb295ef948acba8536849da27d7dce53a73f14cb59

See more details on using hashes here.

File details

Details for the file ssi4onnx-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: ssi4onnx-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for ssi4onnx-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 29d86022014fd37bfc7c2944756b86f252dc93c087f72d1ec05e85dfa8bb221a
MD5 59b0108f6694a7052b043fef5e74b8e7
BLAKE2b-256 1ed00f608419d3ec38f02aee0389cd683d1f2ee0fc1d1ce243e482a893159421

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page