Skip to main content

Simple Shape Inference tool for ONNX.

Project description

ssi4onnx

Simple Shape Inference tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U ssi4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ ssi4onnx -h

usage:
    ssi4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    [-of OUTPUT_ONNX_FILE_PATH]
    [-n]

optional arguments:
  -h, --help
        show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from ssi4onnx import shape_inference
>>> help(shape_inference)

Help on function shape_inference in module ssi4onnx.onnx_shape_inference:

shape_inference(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    estimated_graph: onnx.ModelProto
        Shape estimated onnx ModelProto.

4. CLI Execution

$ ssi4onnx --input_onnx_file_path nanodet_320x320.onnx

5. In-script Execution

from ssi4onnx import shape_inference

estimated_graph = shape_inference(
    input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
)

6. Sample

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssi4onnx-1.0.2.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

ssi4onnx-1.0.2-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file ssi4onnx-1.0.2.tar.gz.

File metadata

  • Download URL: ssi4onnx-1.0.2.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for ssi4onnx-1.0.2.tar.gz
Algorithm Hash digest
SHA256 619eafaae2948e7ab7bfa1e50f09821c078a358059db5d3d7d3394df80ee0c88
MD5 3361f047accde135a4c2a00890bdf0e6
BLAKE2b-256 25a8e9134c2486acdc226731f02a0191ac75c0a945a72f1639cbe28411704036

See more details on using hashes here.

File details

Details for the file ssi4onnx-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: ssi4onnx-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for ssi4onnx-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 eb4bdac421864bf23a3b77d9d7cfbe38edbfb87f45ccc83d96a3342c6e2df7d6
MD5 db7463e99664f588d1823c36387c2c77
BLAKE2b-256 4efed468b3f2759c3d4b5bfa684c46ade7de18619e01398e3751d05f79bd5a4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page