Skip to main content

Simple Shape Inference tool for ONNX.

Project description

ssi4onnx

Simple Shape Inference tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U ssi4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ ssi4onnx -h

usage:
    ssi4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    [-of OUTPUT_ONNX_FILE_PATH]
    [-n]

optional arguments:
  -h, --help
        show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from ssi4onnx import shape_inference
>>> help(shape_inference)

Help on function shape_inference in module ssi4onnx.onnx_shape_inference:

shape_inference(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    estimated_graph: onnx.ModelProto
        Shape estimated onnx ModelProto.

4. CLI Execution

$ ssi4onnx --input_onnx_file_path nanodet_320x320.onnx

5. In-script Execution

from ssi4onnx import shape_inference

estimated_graph = shape_inference(
    input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
)

6. Sample

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssi4onnx-1.0.3.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

ssi4onnx-1.0.3-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file ssi4onnx-1.0.3.tar.gz.

File metadata

  • Download URL: ssi4onnx-1.0.3.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for ssi4onnx-1.0.3.tar.gz
Algorithm Hash digest
SHA256 235fbfad1d03fa392f0fb1ef268f2f6012d2ce2430ce9d03f652fadcd784024b
MD5 92c6d15d46aa089d535333919ad2db11
BLAKE2b-256 a56698c41a33848127adbe8b7e1bd70b7bd60aa8913c5c88451ec932e2864ec2

See more details on using hashes here.

File details

Details for the file ssi4onnx-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: ssi4onnx-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for ssi4onnx-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9f42fc00a4d7779a9564a6bf625233991405ad12a884e0c81dedd598c7bf7649
MD5 c635d0fc4c7fc5cc50f90ca7d50a35a8
BLAKE2b-256 c5901dd6d124fd0095867d951d83dfca9b7a86050fc24448a127d17e370365ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page