Simple Shape Inference tool for ONNX.
Project description
ssi4onnx
Simple Shape Inference tool for ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U ssi4onnx
1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
2. CLI Usage
$ ssi4onnx -h
usage:
ssi4onnx [-h]
-if INPUT_ONNX_FILE_PATH
[-of OUTPUT_ONNX_FILE_PATH]
[-n]
optional arguments:
-h, --help
show this help message and exit.
-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output onnx file path.
-n, --non_verbose
Do not show all information logs. Only error logs are displayed.
3. In-script Usage
>>> from ssi4onnx import shape_inference
>>> help(shape_inference)
Help on function shape_inference in module ssi4onnx.onnx_shape_inference:
shape_inference(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = '',
non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
estimated_graph: onnx.ModelProto
Shape estimated onnx ModelProto.
4. CLI Execution
$ ssi4onnx --input_onnx_file_path nanodet_320x320.onnx
5. In-script Execution
from ssi4onnx import shape_inference
estimated_graph = shape_inference(
input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
)
6. Sample
Before
After
7. Reference
- https://github.com/onnx/onnx/blob/main/docs/Operators.md
- https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
- https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
- https://github.com/PINTO0309/simple-onnx-processing-tools
- https://github.com/PINTO0309/PINTO_model_zoo
8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ssi4onnx-1.0.4.tar.gz
(4.8 kB
view details)
Built Distribution
File details
Details for the file ssi4onnx-1.0.4.tar.gz
.
File metadata
- Download URL: ssi4onnx-1.0.4.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7dcf61ebf3493524f692856936ff55b6ec33231d33ffef6cd36e43e5aab0caef |
|
MD5 | f3c000f34deb78887b859b693ee5c652 |
|
BLAKE2b-256 | c1d3c829bdf3081dd935a0d1870a72d95f130022c9019bdf6dcb256e06b61c54 |
File details
Details for the file ssi4onnx-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: ssi4onnx-1.0.4-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e6d3593ea2f624d6ffab39117e22c162f547c30ea53dcbc1d4e7070674d5d9c |
|
MD5 | 5cccadcf70c577f37fec8a47ecc61eef |
|
BLAKE2b-256 | ec72277e24966c0bb7918b9f94e84b1477d761154cf989d6d94f60860309fb95 |