Skip to main content

Tools for use in Mode Analytics Jupyter Notebooks

Project description

ssmode

Installing & Importing

To use the helper functions in a Mode Python Notebook, first install the package by adding this cell:

pip install ssmode -t "/tmp" > /dev/null 2>&1

You can then import various functions like:

from ssmode.tables import style_table

Styling Documentation

The functions in files bar_chart.py, kpi.py, tables.py are designed to "fake" the Mode Analytics built-in widgets from the Notebook.

Styling Tables

style_table(df, hl_type=None, n=3, bar_cols=[])

  • df: Pandas Dataframe (index will not be displayed)
  • hl_type: None or string 'nlargest', 'gradient' or 'bars' specifying cell highlighting type
  • n: integer > 0 specifying how many greatest cells will be highlighted (only applicable for hl_type='nlargest'), all numeric columns will get this style
  • bar_cols: array of strings specifying which columns will get the "bar charty style" (only applicable for hl_type='bars')
Styling Bar & Line Charts

style_bar_chart(ptl_fig, ytitle='') OR style_line_chart(ptl_fig, ytitle='')

  • ptl_fig: plotly chart with bars
  • ytitle: title on y-axis
Displaying KPI Widget

display_as_kpi(kpi_name, value)

  • kpi_name: string specifying KPI title/name (displayed on top)
  • value: value of the KPI (large value)

Processing Functions Documentation

Outlier Removal

prune_quotes(df, variable_col, group_cols, log_scale=True, k=1.5, max_diffs=[(2,3),(3,5),(4,10)])

  • df: Pandas Dataframe with data to remove outliers from
  • variable_col: string with column name based on which outliers will be removed (e.g. 'price')
  • group_cols: array of string(s) with columns to group df by for quartile calculation purposes (e.g. ['item_id'])
  • log_scale: boolean specifying whether to use logarithmic scale for outlier removal
  • k: float specifying limit ranges Q1-k*IQR and Q3+k*IQR
  • max_diffs: list of tuples with two values, each tuple specifies total number of quotes and the maximal allowed ratio between max/min quotes (if violated, RFQ will be removed before the IQR outlier detection method)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssmode-0.1.6.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

ssmode-0.1.6-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file ssmode-0.1.6.tar.gz.

File metadata

  • Download URL: ssmode-0.1.6.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for ssmode-0.1.6.tar.gz
Algorithm Hash digest
SHA256 9732a69efcd21812d99eff42c95f735204f1c830b017c2b1748623a9cd325ed5
MD5 21cc50c8d9ce57dca4c205522cfc43a3
BLAKE2b-256 d14d63269fb73fa8823b1a33f65ccf9139d9adbed2151c48388fb0b1cf96b224

See more details on using hashes here.

File details

Details for the file ssmode-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: ssmode-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for ssmode-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 31d74968f48848e091f861092a4d5fa86200da60018133051b9cb85cad31a157
MD5 2689d687c6f03441f8dce05387a572f6
BLAKE2b-256 f1edcbe39b5b1ccf7d986a3f4013e9e706a38e7a767034ee848d7b3c0da77a0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page