Skip to main content

Simple Smart Pipe Operator

Project description

Downloads Build Status PyPI

Simple Smart Pipe

SSPipe is a python productivity-tool for rapid data manipulation in python.

It helps you break up any complicated expression into a sequence of simple transformations, increasing human-readability and decreasing the need for matching parentheses!

As an example, here is a single line code for reading students' data from 'data.csv', reporting those in the class 'A19' whose score is more than the average class score into 'report.csv':

from sspipe import p, px
import pandas as pd

pd.read_csv('data.csv') | px[px['class'] == 'A19'] | px[px.score > px.score.mean()].to_csv('report.csv')

As another example, here is a single line code for plotting sin(x) for points in range(0, 2*pi) where cos(x) is less than 0 in red color:

from sspipe import p, px
import numpy as np
import matplotlib.pyplot as plt

np.linspace(0, 2*np.pi, 100) | px[np.cos(px) < 0] | p(plt.plot, px, np.sin(px), 'r')

# The single-line code above is equivalent to the following code without SSPipe:
# X = np.linspace(0, 2*np.pi, 100)
# X = X[np.cos(X) < 0]
# plt.plot(X, np.sin(X), 'r')

If you're familiar with | operator of Unix, or %>% operator of R's magrittr, sspipe provides the same functionality in python.

Installation and Usage

Install sspipe using pip:

pip install --upgrade sspipe

Then import it in your scripts.

from sspipe import p, px

The whole functionality of this library is exposed by two objects p (as a wrapper for functions to be called on the piped object) and px (as a placeholder for piped object).

Examples

Description Python expression using p and px Equivalent python code
Simple
function call
"hello world!" | p(print) X = "hello world!"
print(X)
Function call
with extra args
"hello" | p(print, "world", end='!') X = "hello"
print(X, "world", end='!')
Explicitly positioning
piped argument
with px placeholder
"world" | p(print, "hello", px, "!") X = "world"
print("hello", X, "!")
Chaining pipes 5 | px + 2 | px ** 5 + px | p(print) X = 5
X = X + 2
X = X ** 5 + X
print(X)
Tailored behavior
for builtin map
and filter
(
range(5)
| p(filter, px % 2 == 0)
| p(map, px + 10)
| p(list) | p(print)
)
X = range(5)
X = filter((lambda x:x%2==0),X)
X = map((lambda x: x + 10), X)
X = list(X)
print(X)
NumPy expressions range(10) | np.sin(px)+1 | p(plt.plot) X = range(10)
X = np.sin(X) + 1
plt.plot(X)
Pandas support people_df | px.loc[px.age > 10, 'name'] X = people_df
X.loc[X.age > 10, 'name']
Assignment people_df['name'] |= px.str.upper() X = people_df['name']
X = X.str.upper()
people_df['name'] = X
Pipe as variable to_upper = px.strip().upper()
to_underscore = px.replace(' ', '_')
normalize = to_upper | to_underscore
" ab cde " | normalize | p(print)
_f1 = lambda x: x.strip().upper()
_f2 = lambda x: x.replace(' ','_')
_f3 = lambda x: _f2(_f1(x))
X = " ab cde "
X = _f3(X)
print(X)
Builtin
Data Structures
2 | p({px-1: p([px, p((px+1, 4))])}) X = 2
X = {X-1: [X, (X+1, 4)]}

How it works

The expression p(func, *args, **kwargs) returns a Pipe object that overloads __or__ and __ror__ operators. This object keeps func and args and kwargs until evaluation of x | <Pipe>, when Pipe.__ror__ is called by python. Then it will evaluate func(x, *args, **kwargs) and return the result.

The px object is simply p(lambda x: x).

Compatibility with JulienPalard/Pipe

This library is inspired by, and depends on, the intelligent and concise work of JulienPalard/Pipe. If you want a single pipe.py script or a lightweight library that implements core functionality and logic of SSPipe, Pipe is perfect.

SSPipe is focused on facilitating usage of pipes, by integration with popular libraries and introducing px concept and overriding python operators to make pipe a first-class citizen.

Every existing pipe implemented by JulienPalard/Pipe library is accessible through p.<original_name> and is compatible with SSPipe. SSPipe does not implement any specific pipe function and delegates implementation and naming of pipe functions to JulienPalard/Pipe.

For example, JulienPalard/Pipe's example for solving "Find the sum of all the even-valued terms in Fibonacci which do not exceed four million." can be re-written using sspipe:

def fib():
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

from sspipe import p, px

euler2 = (fib() | p.where(lambda x: x % 2 == 0)
                | p.take_while(lambda x: x < 4000000)
                | p.add())

You can also pass px shorthands to JulienPalard/Pipe API:

euler2 = (fib() | p.where(px % 2 == 0)
                | p.take_while(px < 4000000)
                | p.add())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for sspipe, version 0.1.13
Filename, size File type Python version Upload date Hashes
Filename, size sspipe-0.1.13-py3-none-any.whl (7.3 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size sspipe-0.1.13.tar.gz (7.2 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page