Skip to main content

Python bindings for Complete-Striped-Smith-Waterman-Library (SSW) project

Project description

ssw-py: Striped Smith-Waterman SIMD accelerated Python Package for Use in Genomic Applications

Actions License PyPi

This library uses the excellent source code from this is original source repository

Please cite this PLOS ONE paper by Zhao et al. 2013 when using this software.

Overview

ssw-py provides a fast implementation of the Smith-Waterman algorithm, which uses the Single-Instruction Multiple-Data (SIMD) instructions to parallelize the algorithm at the instruction level.

Using ssw.AlignmentMgr, you can compute the Smith-Waterman score, alignment location and traceback path (CIGAR) of the optimal alignment accurately; and return the sub-optimal alignment score and location heuristically.

Note: When Striped Smith-Waterman opens a gap, the gap open penalty alone is applied.

Installation

from PyPi

$ pip install ssw-py

or from source

$ python setup.py install

Documentation

See documentation for help on using these bindings.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssw-py-1.0.1.tar.gz (111.6 kB view details)

Uploaded Source

Built Distributions

ssw_py-1.0.1-cp311-cp311-win_amd64.whl (149.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

ssw_py-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (431.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl (163.4 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

ssw_py-1.0.1-cp310-cp310-win_amd64.whl (150.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

ssw_py-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (411.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

ssw_py-1.0.1-cp39-cp39-win_amd64.whl (151.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

ssw_py-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (410.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.1-cp39-cp39-macosx_11_0_arm64.whl (160.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ssw_py-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl (164.8 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

ssw_py-1.0.1-cp38-cp38-win_amd64.whl (151.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

ssw_py-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (409.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file ssw-py-1.0.1.tar.gz.

File metadata

  • Download URL: ssw-py-1.0.1.tar.gz
  • Upload date:
  • Size: 111.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw-py-1.0.1.tar.gz
Algorithm Hash digest
SHA256 11e8eb4aa0c42cff31908869f69b6d233f1600273698a792ced355bd18e23ec0
MD5 525e33fc606497e548ba2c36e5cd0e5d
BLAKE2b-256 a5f89c0bcdb1c6f1c770babecea4504eeddf5fc78ca026b04de6e84bc614cfd3

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 149.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2858dd17f08325342725fd679e7046b87639ecad6c05d9f9ccb23d5b2ef96af0
MD5 ceec7b3a8d66e68da36c1c9713b7bfb7
BLAKE2b-256 b519767acd64503226a8459a276ba1e4b40bf09462433a0da2d902284c37f2f2

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02eb5212dc69690b8734cb395ffdaae06003cfe38cb4749d6e24c8b40352028d
MD5 f4bdb4915722d8c259cc57f0a41ae56f
BLAKE2b-256 14d2f749010dac34e2cc73c7441611f3901c7d74f661b5c034a65f82e1b4177d

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 77ff5ffc4963f89a24795eeae0a9c848b3626df25cb800627d758fabbb2790c5
MD5 b4ab5998651dc80caf252119b35d0575
BLAKE2b-256 bda4f8849b7f2ad8f4e6dd1cf22ecca090bd782aceb30e2f86ce56ba5655cc17

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 150.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79905c6fa3d8c619a9f57b5b12b52409aa7f7861565cd4e23825a8ef3bd0cf25
MD5 0925f129ca14071846eff60d189f25df
BLAKE2b-256 abbe433ed554c62ede8a07eafc481b2f8783e6ad304b8c6f0c1ec1e5bc8cff2b

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6443fdcdbf5d0c6992015f24b1c6d1060d0e31d542d6b37140a23732ae3accde
MD5 fd06a169953e20ab400cb613830316b1
BLAKE2b-256 349187698a52655a6dc9cd542e44ff96ae41a078dfc65bba39f6db8c94e75d91

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd735f809b1d29b5b275917d562fe9a4ee4066b9e7090a4474298825e8ac07f9
MD5 61e300fb0ead5ca208e872253edee571
BLAKE2b-256 5391a684f2aaddf3960cff53db020799d049615caa84c5a33f7cce247c8ae9d5

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 151.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cfca0d0d14b7220701daece1bced28f755eeea35863356967094e9427551948f
MD5 da08eca1164e5094b1ded05498e522b1
BLAKE2b-256 f32dda96399986f10d93be6124b7894242daec8a02b2b052fd636ca9e29344d4

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f470d85cf91a411b305c9a970768b7c733f8a10b1076ba13417646664630c14
MD5 9502b6f4a417ba5ae997d18bd1064071
BLAKE2b-256 dfff44a437cea1e516b947008d3f35612ca75fa28d516c5f3c742dfb056f8723

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a87c9d5fec2609021df8471f104c637f746de3f92d6f5250d1424794e9b0b12
MD5 9ee0c4f70f301131664ce1d1277844e8
BLAKE2b-256 a20315c10e28db82010e5900771a82eb475fa6aae3d9d28b28c3b545274d9a0c

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 490cdc84cda8cbe964c3c7048235f0a206fc91ae5749bf8177a68fb485bdc936
MD5 0e9c37e36567347c1415e6e799cfd333
BLAKE2b-256 4d34a6054a0bf232315252debdb67d19e7e7b66e491d109870ce3049ece825b6

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 17c4509cbd9ed175ce51a383a2588b163b3577f87c409647c425b640011e1415
MD5 b4f6ea9e3b91f620e2dd02a7958cf659
BLAKE2b-256 555b6187d6b6c8ce38fc0dd2ae86ae9ea419d12fe43d78e824455f7eb1973d4d

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3bffc5a8a7b769d22f6a553326a538b2ed3264361e3b97c15c39ec044759244
MD5 8ba0419b24a2cd53e9d6133db6efb7d7
BLAKE2b-256 e5f7ea2cd05bc06548490f920eef164494ba1e6ce76e56a9857aaa7795a276c9

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f970b857f6844b6a2c61f19334863f3eb3f61248c301e5ed634211c679dbc75
MD5 6b9e7005ed6e6461ce0c7c9cfa54e78c
BLAKE2b-256 bcc244cdfd45535cccab3157b5d03050986a194f99b9b64d60761e2d434d057e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page