Python bindings for Complete-Striped-Smith-Waterman-Library (SSW) project
Project description
# ssw-py: Striped Smith-Waterman SIMD accelerated Python Package for Use in Genomic Applications
<a href=”https://github.com/libnano/ssw-py/actions/” rel=”actions”>![Actions](https://github.com/libnano/ssw-py/actions/workflows/ssw-py-ci-github-action.yml/badge.svg)</a> <a href=”http://www.gnu.org/licenses/gpl-2.0.html” rel=”license”>![License](https://img.shields.io/pypi/l/ssw-py.png)</a> <a href=”https://pypi.python.org/pypi/ssw-py” rel=”pypi”>![PyPi](https://img.shields.io/pypi/v/ssw-py.png)</a>
This library uses the excellent source code from this is [original source repository](https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library)
Please cite this [PLOS ONE paper](http://dx.plos.org/10.1371/journal.pone.0082138) by Zhao et al. 2013 when using this software.
## Overview
ssw-py provides a fast implementation of the Smith-Waterman algorithm, which uses the Single-Instruction Multiple-Data (SIMD) instructions to parallelize the algorithm at the instruction level.
Using ssw.AlignmentMgr, you can compute the Smith-Waterman score, alignment location and traceback path ([CIGAR](https://genome.sph.umich.edu/wiki/SAM#What_is_a_CIGAR.3F)) of the optimal alignment accurately; and return the sub-optimal alignment score and location heuristically.
Note: When Striped Smith-Waterman opens a gap, the gap open penalty alone is applied.
## Installation
from [PyPi](https://pypi.org/project/ssw-py/)
$ pip install ssw-py
or from source
$ python setup.py install
## Documentation See [documentation](https://libnano.github.io/ssw-py/) for help on using these bindings.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file ssw-py-1.0.0.tar.gz
.
File metadata
- Download URL: ssw-py-1.0.0.tar.gz
- Upload date:
- Size: 111.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f44a411e414f192f82d58ec388f8f8108bde26a56a645f54d7aa28da2b0ed78 |
|
MD5 | de9fd4774356ca754052bd4d76669384 |
|
BLAKE2b-256 | debea22cd8683f3311d8cc2275b48659e37284dd5f01a40022e66a1c12b5f5e1 |
File details
Details for the file ssw_py-1.0.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 149.9 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17eb37de144bb7613bb61f75b66ed87a25cbc8f6f114f74704ff81e6d0e159a1 |
|
MD5 | 796583c173f916841f047b9c096c4f90 |
|
BLAKE2b-256 | 1bbb58b6cd057de1e3bd585557e75ee4ed7ecf78f41d8ea1be89ed40e35d2353 |
File details
Details for the file ssw_py-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 431.3 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74b9d87082f62fbd95a8f1664878fc4d7310063903227cd5305d3a691f2a1826 |
|
MD5 | e28252bf918347704569cf6213f4af70 |
|
BLAKE2b-256 | d24a6ff24da9056fdebc40c413e25e029c8cb10a50a88d712abc52ef005e58ce |
File details
Details for the file ssw_py-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl
- Upload date:
- Size: 163.4 kB
- Tags: CPython 3.11, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f51735b86dc2462eab4431e09f9ab558d792cf0250c5d7f6ac95cd31aec9923e |
|
MD5 | 8f2708a0501dfa6c8d9e36d56c6bb5c7 |
|
BLAKE2b-256 | 8cb9a97c70a42db8c2310551913c9d1901a20be11e643c2c79d7984e2f08fc05 |
File details
Details for the file ssw_py-1.0.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 150.5 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0269a2b5dd59169d589bab7fce773aad5dd4f09b3a9fde69bc0564dc4b9e7761 |
|
MD5 | df124a87b271fd2335cf784636ddf38b |
|
BLAKE2b-256 | f45dd4a49f48a922a0c47595672524adfa872ddaf922590071a103d2b1ed7734 |
File details
Details for the file ssw_py-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 411.7 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63abc416c3ef8184bf1d3302177139e1d157b742abd21912fe8f3eb6b1422251 |
|
MD5 | 84ffed31094b305bf21723fd8b046d24 |
|
BLAKE2b-256 | ed4bdf44a01fc08c392f08803b90d6d7ea380eb3591e0d9859ac197c8ae2dab2 |
File details
Details for the file ssw_py-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl
- Upload date:
- Size: 163.9 kB
- Tags: CPython 3.10, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b246a3c8da04d52279c93bfa4cb06da78ea414068f8b2c0a18359e99f363af3d |
|
MD5 | 39beb608093d7901121af8dd38dcde43 |
|
BLAKE2b-256 | badc1b0e0d4a2ddcd0821c7c701e243f4fcc8a688eac63d5c7ee4f49ad757a67 |
File details
Details for the file ssw_py-1.0.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 151.6 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2587f53c3768daa8ca4feeb564ed8bad2d542a94b9bbd4c2854a1761978a64d |
|
MD5 | f0eed7e24e4bde1d8fde2b172381a25d |
|
BLAKE2b-256 | a4a0295b835654e02c3f596b76c5df16ba5f33031f4b4ce047a1f2ecff2322da |
File details
Details for the file ssw_py-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 410.0 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb5a8237981770f93603018e5a2299f1466f14ff108d94ae7ce8f2aac3df52c1 |
|
MD5 | a20359285777b275f67a2995cee446dc |
|
BLAKE2b-256 | 2dc4db194af888461ec22ea28d448a9bba8ba2790082f087ab160f3d13d35704 |
File details
Details for the file ssw_py-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 160.4 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b3db7311655dddb77d9e46ebddbfaed6b8399082c0fb705c89a97f1c56d9547 |
|
MD5 | a4a43cf74d5b2efcd3dbe54d0da1b244 |
|
BLAKE2b-256 | 12c0ebc4673ec6bd6129918f739b0b981abaaec9484f4e98cf2d13d968e37961 |
File details
Details for the file ssw_py-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl
- Upload date:
- Size: 164.7 kB
- Tags: CPython 3.9, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f33f714430a06aebce1663e6779c5c5d89097d6e64818e2c9eb3ad67cef7c802 |
|
MD5 | 4a79c2a771ac08d50548fb373d7a3f58 |
|
BLAKE2b-256 | ea7ea8ef02c65f27b833d9a1a8e27fc5e7f41ac9984f725fb7c791e8def8046a |
File details
Details for the file ssw_py-1.0.0-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 151.5 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0495aa3889928fbf37694efef6660327288dd2dca28deb108b96f33820b4ef00 |
|
MD5 | 07b45d60e861ca2e1e1a4dfb1864e691 |
|
BLAKE2b-256 | cfbfafe8c7939ba6c16c39217776ad17ea78e28806e64c5e9ef8169ee2f16216 |
File details
Details for the file ssw_py-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 409.3 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c85df289c121daad484ff3c0357b87d86a077f1fe6cfbd3b031622ca73acb033 |
|
MD5 | fa1008694bd0a7599f398474e9249ccd |
|
BLAKE2b-256 | 7c59b126390f832a8b249905f0f637baf70e6940217d675c24bce413ea0d1839 |
File details
Details for the file ssw_py-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: ssw_py-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
- Upload date:
- Size: 163.9 kB
- Tags: CPython 3.8, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ee5339fed45ebfa65bdd2d8ecb3085b75de82f7643d7e350db74a9ca135f0e2 |
|
MD5 | 9b33c8d6157e84da8ea6d0980ab4969d |
|
BLAKE2b-256 | 21b5267697a33ee33654f15f66e790a00ea93e55b5d7d500d43edc8199bea858 |