Skip to main content

Python bindings for Complete-Striped-Smith-Waterman-Library (SSW) project

Project description

# ssw-py: Striped Smith-Waterman SIMD accelerated Python Package for Use in Genomic Applications

<a href=”https://github.com/libnano/ssw-py/actions/” rel=”actions”>![Actions](https://github.com/libnano/ssw-py/actions/workflows/ssw-py-ci-github-action.yml/badge.svg)</a> <a href=”http://www.gnu.org/licenses/gpl-2.0.html” rel=”license”>![License](https://img.shields.io/pypi/l/ssw-py.png)</a> <a href=”https://pypi.python.org/pypi/ssw-py” rel=”pypi”>![PyPi](https://img.shields.io/pypi/v/ssw-py.png)</a>

This library uses the excellent source code from this is [original source repository](https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library)

Please cite this [PLOS ONE paper](http://dx.plos.org/10.1371/journal.pone.0082138) by Zhao et al. 2013 when using this software.

## Overview

ssw-py provides a fast implementation of the Smith-Waterman algorithm, which uses the Single-Instruction Multiple-Data (SIMD) instructions to parallelize the algorithm at the instruction level.

Using ssw.AlignmentMgr, you can compute the Smith-Waterman score, alignment location and traceback path ([CIGAR](https://genome.sph.umich.edu/wiki/SAM#What_is_a_CIGAR.3F)) of the optimal alignment accurately; and return the sub-optimal alignment score and location heuristically.

Note: When Striped Smith-Waterman opens a gap, the gap open penalty alone is applied.

## Installation

from [PyPi](https://pypi.org/project/ssw-py/)

$ pip install ssw-py

or from source

$ python setup.py install

## Documentation See [documentation](https://libnano.github.io/ssw-py/) for help on using these bindings.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssw-py-1.0.0.tar.gz (111.5 kB view details)

Uploaded Source

Built Distributions

ssw_py-1.0.0-cp311-cp311-win_amd64.whl (149.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

ssw_py-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (431.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl (163.4 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

ssw_py-1.0.0-cp310-cp310-win_amd64.whl (150.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

ssw_py-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (411.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

ssw_py-1.0.0-cp39-cp39-win_amd64.whl (151.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

ssw_py-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (410.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.0-cp39-cp39-macosx_11_0_arm64.whl (160.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ssw_py-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl (164.7 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

ssw_py-1.0.0-cp38-cp38-win_amd64.whl (151.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

ssw_py-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (409.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ssw_py-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file ssw-py-1.0.0.tar.gz.

File metadata

  • Download URL: ssw-py-1.0.0.tar.gz
  • Upload date:
  • Size: 111.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw-py-1.0.0.tar.gz
Algorithm Hash digest
SHA256 6f44a411e414f192f82d58ec388f8f8108bde26a56a645f54d7aa28da2b0ed78
MD5 de9fd4774356ca754052bd4d76669384
BLAKE2b-256 debea22cd8683f3311d8cc2275b48659e37284dd5f01a40022e66a1c12b5f5e1

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 149.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 17eb37de144bb7613bb61f75b66ed87a25cbc8f6f114f74704ff81e6d0e159a1
MD5 796583c173f916841f047b9c096c4f90
BLAKE2b-256 1bbb58b6cd057de1e3bd585557e75ee4ed7ecf78f41d8ea1be89ed40e35d2353

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74b9d87082f62fbd95a8f1664878fc4d7310063903227cd5305d3a691f2a1826
MD5 e28252bf918347704569cf6213f4af70
BLAKE2b-256 d24a6ff24da9056fdebc40c413e25e029c8cb10a50a88d712abc52ef005e58ce

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f51735b86dc2462eab4431e09f9ab558d792cf0250c5d7f6ac95cd31aec9923e
MD5 8f2708a0501dfa6c8d9e36d56c6bb5c7
BLAKE2b-256 8cb9a97c70a42db8c2310551913c9d1901a20be11e643c2c79d7984e2f08fc05

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 150.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0269a2b5dd59169d589bab7fce773aad5dd4f09b3a9fde69bc0564dc4b9e7761
MD5 df124a87b271fd2335cf784636ddf38b
BLAKE2b-256 f45dd4a49f48a922a0c47595672524adfa872ddaf922590071a103d2b1ed7734

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63abc416c3ef8184bf1d3302177139e1d157b742abd21912fe8f3eb6b1422251
MD5 84ffed31094b305bf21723fd8b046d24
BLAKE2b-256 ed4bdf44a01fc08c392f08803b90d6d7ea380eb3591e0d9859ac197c8ae2dab2

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b246a3c8da04d52279c93bfa4cb06da78ea414068f8b2c0a18359e99f363af3d
MD5 39beb608093d7901121af8dd38dcde43
BLAKE2b-256 badc1b0e0d4a2ddcd0821c7c701e243f4fcc8a688eac63d5c7ee4f49ad757a67

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 151.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b2587f53c3768daa8ca4feeb564ed8bad2d542a94b9bbd4c2854a1761978a64d
MD5 f0eed7e24e4bde1d8fde2b172381a25d
BLAKE2b-256 a4a0295b835654e02c3f596b76c5df16ba5f33031f4b4ce047a1f2ecff2322da

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb5a8237981770f93603018e5a2299f1466f14ff108d94ae7ce8f2aac3df52c1
MD5 a20359285777b275f67a2995cee446dc
BLAKE2b-256 2dc4db194af888461ec22ea28d448a9bba8ba2790082f087ab160f3d13d35704

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b3db7311655dddb77d9e46ebddbfaed6b8399082c0fb705c89a97f1c56d9547
MD5 a4a43cf74d5b2efcd3dbe54d0da1b244
BLAKE2b-256 12c0ebc4673ec6bd6129918f739b0b981abaaec9484f4e98cf2d13d968e37961

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f33f714430a06aebce1663e6779c5c5d89097d6e64818e2c9eb3ad67cef7c802
MD5 4a79c2a771ac08d50548fb373d7a3f58
BLAKE2b-256 ea7ea8ef02c65f27b833d9a1a8e27fc5e7f41ac9984f725fb7c791e8def8046a

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ssw_py-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 151.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for ssw_py-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0495aa3889928fbf37694efef6660327288dd2dca28deb108b96f33820b4ef00
MD5 07b45d60e861ca2e1e1a4dfb1864e691
BLAKE2b-256 cfbfafe8c7939ba6c16c39217776ad17ea78e28806e64c5e9ef8169ee2f16216

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c85df289c121daad484ff3c0357b87d86a077f1fe6cfbd3b031622ca73acb033
MD5 fa1008694bd0a7599f398474e9249ccd
BLAKE2b-256 7c59b126390f832a8b249905f0f637baf70e6940217d675c24bce413ea0d1839

See more details on using hashes here.

File details

Details for the file ssw_py-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ssw_py-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0ee5339fed45ebfa65bdd2d8ecb3085b75de82f7643d7e350db74a9ca135f0e2
MD5 9b33c8d6157e84da8ea6d0980ab4969d
BLAKE2b-256 21b5267697a33ee33654f15f66e790a00ea93e55b5d7d500d43edc8199bea858

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page