Skip to main content

Stabilized ICA algorithm

Project description

stabilized-ica

Documentation Status License: MIT Code style: black

This repository proposes a python implementation for stabilized ICA decomposition algorithm. Most of the technical details can be found in the references [1], [2],[3], [4] and [5].

Our algorithm integrates two well-known methods to solve the ICA problem :

  • FastICA (implemented in scikit-learn)
  • Preconditioned ICA for Real Data - Picard (implemented in picard package)

We also propose an implementation of the Mutual Nearest Neighbors method as well as a visualization tool to draw the associated network. It is used to study the stability of the ICA components through different datasets.

Stabilized-ica is now compatible with scikit-learn API, meaning that you can use the base class as a sklearn transformer and include it in complex ML pipelines.

Install

Install the latest stable version with PyPi

pip install stabilized-ica

Install from source

pip install git+https://github.com/ncaptier/stabilized-ica.git

Experiments

We provide three jupyter notebooks for an illustration with transcriptomic data :

We provide one jupyter notebook for an illustration with EEG/MEG data :

We provide one jupyter notebook for an illustration of the integration of stabilized-ica into scikit-learn Machine learning pipelines:

Data

The data set which goes with the jupyter notebook "ICA decomposition with stabilized ICA" can be found in the .zip file data.zip. Please extract locally the data set before running the notebook.

For the jupyter notebooks "Stability of ICA components accross several NSCLC cohorts" and "Stabilized ICA for single-cell expression data (cell cycle)" please note that you will have to load the data yourself in order to run them (all the necessary links are reported on the notebooks).

Stabilized ICA for omics data

stabilized-ica was originally developped to deconvolute omics data into reproducible biological sources. We provide two additional computational tools to use stabilized-ica with omics data and interpret the extacted stable sources:

  • sica-omics is a Python toolbox which complements stabilized-ica for the analysis of omics data. In particular, it proposes annotation functions to decipher the biological meaning of the extracted ica sources, as well as a wrapper to adapt stabilized-ica base code to the special case of Anndata format which is popular for dealing with single-cell gene expression data.
  • BIODICA is a computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. It uses the stabilized-ica package as its computational core. In particular, it comes with Graphical User interface providing a no-code access to all of its functionnalities.
    If you use BIODICA in a scientific publication, we would appreciate citation to the following paper:
    
    Nicolas Captier, Jane Merlevede, Askhat Molkenov, Ainur Seisenova, Altynbek Zhubanchaliyev, Petr V Nazarov, Emmanuel Barillot, Ulykbek Kairov, Andrei Zinovyev, BIODICA: a computational environment for Independent Component Analysis of omics data, Bioinformatics, Volume 38, Issue 10, 15 May 2022, Pages 2963–2964, https://doi.org/10.1093/bioinformatics/btac204
    

Examples

Stabilized ICA method

import pandas as pd
from sica.base import StabilizedICA

df = pd.read_csv("data.csv", index_col=0)

sICA = StabilizedICA(n_components=45, n_runs=30 ,plot=True, n_jobs = -1)
sICA.fit(df)

Metagenes = pd.DataFrame(sICA.S_, columns = df.columns, index = ['metagene ' + str(i) for i in range(sICA.S_.shape[0])])
Metagenes.head()

Mutual Nearest Neighbors method

from sica.mutualknn import MNNgraph

cg = MNNgraph(data = [df1 , df2 , df3] , names=['dataframe1' , 'dataframe2' , 'dataframe3'] , k=1)
cg.draw(colors = ['r', 'g' , 'b'] , spacing = 2)

cg.export_json("example.json")

Acknowledgements

This package was created as a part of the PhD project of Nicolas Captier in the Computational Systems Biology of Cancer group of Institut Curie.

References

[1] "Determining the optimal number of independent components for reproducible transcriptomic data analysis" - Kairov et al. 2017
[2] "Assessing reproducibility of matrix factorization methods in independent transcriptomes" - Cantini et al. 2019
[3] "Icasso: software for investigating the reliability of ICA estimates by clustering and visualization" - Himberg et al. 2003
[4] "Faster independent component analysis by preconditioning with Hessian approximations" - Ablin et al. 2018
[5] "BIODICA: a computational environment for Independent Component Analysis of omics data" - Captier et al. 2022

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stabilized-ica-2.0.0.tar.gz (25.3 kB view details)

Uploaded Source

Built Distribution

stabilized_ica-2.0.0-py3-none-any.whl (24.3 kB view details)

Uploaded Python 3

File details

Details for the file stabilized-ica-2.0.0.tar.gz.

File metadata

  • Download URL: stabilized-ica-2.0.0.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for stabilized-ica-2.0.0.tar.gz
Algorithm Hash digest
SHA256 04c460858251282baabca2541cdf6693e0b0bfb14ea669e39e9ad4be4fa7b3a2
MD5 af7990d5cf8917d5d9863d1dbad4bdb7
BLAKE2b-256 c4986ecbf758bdd861b87534e877e4da2a4866db3f8069819877a9f6e84afbd0

See more details on using hashes here.

File details

Details for the file stabilized_ica-2.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for stabilized_ica-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2f9d17cda4d480bebfb28282b8b96b0034d940530c21b06784ea33b7f85ec4b5
MD5 aac0cf8f070ab2c6f79fbcb9ddef2b2a
BLAKE2b-256 1e6feeec7e90df6b4bac4831192640f6a2e9ac53f25c7ed5bc956712cf44cdc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page