Create 🔥 videos with Stable Diffusion by exploring the latent space and morphing between text prompts.
Project description
stable-diffusion-videos
Example - morphing between "blueberry spaghetti" and "strawberry spaghetti"
Installation
pip install stable_diffusion_videos
Usage
Check out the examples folder for example scripts 👀
Making Videos
Note: For Apple M1 architecture, use torch.float32
instead, as torch.float16
is not available on MPS.
from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch
pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")
video_path = pipeline.walk(
prompts=['a cat', 'a dog'],
seeds=[42, 1337],
num_interpolation_steps=3,
height=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
width=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
output_dir='dreams', # Where images/videos will be saved
name='animals_test', # Subdirectory of output_dir where images/videos will be saved
guidance_scale=8.5, # Higher adheres to prompt more, lower lets model take the wheel
num_inference_steps=50, # Number of diffusion steps per image generated. 50 is good default
)
Making Music Videos
New! Music can be added to the video by providing a path to an audio file. The audio will inform the rate of interpolation so the videos move to the beat 🎶
from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch
pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")
# Seconds in the song.
audio_offsets = [146, 148] # [Start, end]
fps = 30 # Use lower values for testing (5 or 10), higher values for better quality (30 or 60)
# Convert seconds to frames
num_interpolation_steps = [(b-a) * fps for a, b in zip(audio_offsets, audio_offsets[1:])]
video_path = pipeline.walk(
prompts=['a cat', 'a dog'],
seeds=[42, 1337],
num_interpolation_steps=num_interpolation_steps,
audio_filepath='audio.mp3',
audio_start_sec=audio_offsets[0],
fps=fps,
height=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
width=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
output_dir='dreams', # Where images/videos will be saved
guidance_scale=7.5, # Higher adheres to prompt more, lower lets model take the wheel
num_inference_steps=50, # Number of diffusion steps per image generated. 50 is good default
)
Using the UI
from stable_diffusion_videos import StableDiffusionWalkPipeline, Interface
import torch
pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")
interface = Interface(pipeline)
interface.launch()
Credits
This work built off of a script shared by @karpathy. The script was modified to this gist, which was then updated/modified to this repo.
Contributing
You can file any issues/feature requests here
Enjoy 🤗
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file stable_diffusion_videos-0.9.1.tar.gz
.
File metadata
- Download URL: stable_diffusion_videos-0.9.1.tar.gz
- Upload date:
- Size: 42.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 164c0d9268c2f823b145db6b25f621f3cb6bc1f623d4d5489701b810e74eaff6 |
|
MD5 | f9067d228f2d52c9ce3ac303dbbe186a |
|
BLAKE2b-256 | a89151943e185fa21220888294213fe327ec99ae3b68405c0aa65779954baf71 |
File details
Details for the file stable_diffusion_videos-0.9.1-py3-none-any.whl
.
File metadata
- Download URL: stable_diffusion_videos-0.9.1-py3-none-any.whl
- Upload date:
- Size: 42.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 299ebc6ed2d5097f15c85d537a009c1f8e0e381bf8432f55fe1f7a7378ce8b74 |
|
MD5 | bf1756472297d72ea329e322c8e6dd94 |
|
BLAKE2b-256 | 48d1661770a1508e320c48129f5c78987fc8e6ef05f278c42b1e76a1320b3d79 |