Skip to main content

Convert StableHLO models into Apple Core ML format

Project description

Convert StableHLO models into Apple Core ML format

This repo is currently experimental!

Only a subset of the StableHLO operations have been implemented, and some of them may have restrictions.

Due to the current dot_general op implementation, it is only possible to target iOS >= 18.

Look in the tests directory, to see what has currently been tested.

The package is published to PyPi as stablehlo-coreml-experimental.

Converting a model

To convert a StableHLO module, do the following:

import coremltools as ct
from stablehlo_coreml.converter import convert
from stablehlo_coreml import DEFAULT_HLO_PIPELINE

mil_program = convert(hlo_module, minimum_deployment_target=ct.target.iOS18)
cml_model = ct.convert(
    mil_program,
    source="milinternal",
    minimum_deployment_target=ct.target.iOS18,
    pass_pipeline=DEFAULT_HLO_PIPELINE,
)

For a Jax project, the hlo_module can be obtained the following way:

import jax
from jax._src.lib.mlir import ir
from jax._src.interpreters import mlir as jax_mlir
from jax.export import export

import jax.numpy as jnp

def jax_function(a, b):
    return jnp.einsum("ij,jk -> ik", a, b)

context = jax_mlir.make_ir_context()
input_shapes = (jnp.zeros((2, 4)), jnp.zeros((4, 3)))
jax_exported = export(jax.jit(jax_function))(*input_shapes)
hlo_module = ir.Module.parse(jax_exported.mlir_module(), context=context)

For the Jax example to work, you will additionally need to install absl-py and flatbuffers as dependencies.

For additional examples see the tests directory.

Notes

  • coremltools supports up to python 3.11. Do not run hatch with a newer version. Can be controlled using fx export HATCH_PYTHON=python3.11
  • Run tests using hatch run test:pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stablehlo_coreml_experimental-0.0.10.tar.gz (33.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file stablehlo_coreml_experimental-0.0.10.tar.gz.

File metadata

File hashes

Hashes for stablehlo_coreml_experimental-0.0.10.tar.gz
Algorithm Hash digest
SHA256 aa17e2e6d57161c402020be34c827e5a6fe419aeb261d9a9b9de9fb2e733f929
MD5 00c4a7a25085148bf5cfcbf365451451
BLAKE2b-256 a70a8c36274c4e3633f30c555521e711ecab7ad75e919a862d00209d233637ec

See more details on using hashes here.

File details

Details for the file stablehlo_coreml_experimental-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for stablehlo_coreml_experimental-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 8a39d22d09752ce04605b54e9e22e589459f052ba32315d140daaf4fa41aad0b
MD5 f17860135e33e975b6f59967956bc44a
BLAKE2b-256 e5aea6b011c7cc27d29de1cba0f6322c73ca9c5cfa831a76cf9aa2e3ef57d7d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page