Skip to main content

Convert StableHLO models into Apple Core ML format

Project description

Convert StableHLO models into Apple Core ML format

This repo is currently experimental!

Only a subset of the StableHLO operations have been implemented, and some of them may have restrictions.

Due to the current dot_general op implementation, it is only possible to target iOS >= 18.

Look in the tests directory, to see what has currently been tested.

The package is published to PyPi as stablehlo-coreml-experimental.

Converting a model

To convert a StableHLO module, do the following:

import coremltools as ct
from stablehlo_coreml.converter import convert
from stablehlo_coreml import DEFAULT_HLO_PIPELINE

mil_program = convert(hlo_module, minimum_deployment_target=ct.target.iOS18)
cml_model = ct.convert(
    mil_program,
    source="milinternal",
    minimum_deployment_target=ct.target.iOS18,
    pass_pipeline=DEFAULT_HLO_PIPELINE,
)

For a Jax project, the hlo_module can be obtained the following way:

import jax
from jax._src.lib.mlir import ir
from jax._src.interpreters import mlir as jax_mlir
from jax.export import export

import jax.numpy as jnp

def jax_function(a, b):
    return jnp.einsum("ij,jk -> ik", a, b)

context = jax_mlir.make_ir_context()
input_shapes = (jnp.zeros((2, 4)), jnp.zeros((4, 3)))
jax_exported = export(jax.jit(jax_function))(*input_shapes)
hlo_module = ir.Module.parse(jax_exported.mlir_module(), context=context)

For the Jax example to work, you will additionally need to install absl-py and flatbuffers as dependencies.

For additional examples see the tests directory.

Notes

  • coremltools supports up to python 3.11. Do not run hatch with a newer version. Can be controlled using fx export HATCH_PYTHON=python3.11
  • Run tests using hatch run test:pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stablehlo_coreml_experimental-0.0.4.tar.gz (24.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file stablehlo_coreml_experimental-0.0.4.tar.gz.

File metadata

File hashes

Hashes for stablehlo_coreml_experimental-0.0.4.tar.gz
Algorithm Hash digest
SHA256 c1756b41c8bfd68999e5be833f163970db25b9a61ecf4fea0e393202a85415ac
MD5 21e15b2698c39cf0470d89ba640f9f23
BLAKE2b-256 35f9c35540248ca1dcb08ca20579bc2cdd8c1b89280e7579e73b0500b14e3aeb

See more details on using hashes here.

File details

Details for the file stablehlo_coreml_experimental-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for stablehlo_coreml_experimental-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a45fe2d6849f13a6bcdfb2b79419d865c521b7adc68eb2b944efc681eb66cada
MD5 695ce75811d071e5df3666678c5d800c
BLAKE2b-256 20e19f6f2ed4c4dd128cecd495113fd06c38c9085f854638f960f25c9f0bf23e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page