Skip to main content

Simulate Simulink FMUs as Gymnasium environment

Project description

Stable Reinforcement Learning for Simulink

Documentation Status Code style: black

StableRLS is a software package that lets you use your existing MATLAB Simulink models in Python for reinforcement learning. Basically, your simulation is wrapped in a Python Gymnasium environment. The package provides the following features:

  • automatic generation of input and output signals for your model
  • automatic compilation of the Simulink model into a functional-mockup-unit (FMU) to enable fast simulation
  • flexible post-processing implementation
  • easy-to-read code

And the best part is that the only thing you need to do is:

  • define a reward function to train your agent

General Information

Reinforcement Learning (RL) is a rapidly changing and innovative field. The main purpose of this package is to combine the easy-to-use MATLAB Simulink modeling interface with the flexible and state-of-the-art Gymnasium interface. Therefore, the RL algorithm and the learning interface are out of scope for this package. However, we make the interface between Matlab and Python as easy as possible.

Installation

This package is currently tested with Python 3.9. To install the package, run pip install StableRLS. You have to install the MATLAB engine seperately because each MATLAB release has some specific requirements (see below).

You can also clone this repository and run pip install -e StableRLS/ from the main directory. This will also install the main dependencies, which are listed in requirements.txt. To actively contribute, you should also install the optional-requirements.txt, which also includes the dependencies for building the documentation, by running pip install -r optional-requirements.txt.

We decided to exclude the typical machine learning frameworks (PyTorch, Tensorflow) from the requirements, because everyone has their own preferences and we want to keep this package small. But some of our example are based on PyTorch, so you need to run pip install torch if you want to run them locally. This will also be mentioned in the examples. To compile the documentation locally, you need to have Pandoc installed on your computer.

Matlab Version

The MATLAB engine Python package is a requirement to compile a given MATLAB Simulink model. the MATLAB release R2022b it was inconvenient to install the engine, see the instructions. After the release, it's possible to install the engine as a pip package. StableRLS won't try to install the MATLAB engine as dependency because the pip package only supports the newest MATLAB release. Currently, you can run pip install matlabengine if you have MATLAB 2023a installed, if you have MATLAB 2022b installed run pip install matlabengine==9.13.7. For other releases refer to the documentation mentioned.

Get Started

Check out our examples (/examples) or the documentation, which also contains the examples.

Contribution and other issues

We are researchers in the field of electrical engineering, but this package is also useful for other engineers who use MATLAB Simulink as part of their research. If you would like to contribute to the development of this tool, please create issues or pull requests. If you have problems installing or using this tool, you can also create an issue. For more information about contributions and issues, take a look at "HOW_TO_CONTRIBUTE.md" located at the top of the repository.

Building the documentation

Run sphinx-autobuild docs/ docs/build/html from the main directory and open the documentation localhost:8000. The page is updated automatically after any file in the documentation is changed.

More information

To install clean use pip freeze | grep -v -f requirements.txt - | grep -v '^#' | grep -v '^-e ' | xargs pip uninstall -y to remove all packages except the one with -e flag. Afterwards pip install -r requirements.txt or pip install -r optional-requirements.txt.

Make this public

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

StableRLS-1.0.4.tar.gz (27.4 kB view details)

Uploaded Source

File details

Details for the file StableRLS-1.0.4.tar.gz.

File metadata

  • Download URL: StableRLS-1.0.4.tar.gz
  • Upload date:
  • Size: 27.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for StableRLS-1.0.4.tar.gz
Algorithm Hash digest
SHA256 c53738d8470a81f2e1c8b0eb144235458bc9d8ddb3484a57d887aa64d7d83f20
MD5 45a2a3bd6f5dd7f124a1f0e65800c457
BLAKE2b-256 2cb1ab90d580c47afa5b8117a09377df4666ebde892a598f5a77609d42ff5599

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page